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» Multimodal Deep Learning, hitps://arxiv.org/pdf/2301.04856.pdf
> M EiRTE
» CMU 11-777 Multimodal Machine Learning, https://cmu-multicomp-lab.github.io/mmmi-
course/fall2022/

» CMU 11-877 Advanced Topics in Multimodal Machine Learning, hitps://cmu-multicomp-

lab.qgithub.io/adv-mmml-course/spring2023/

» https://cmu-multicomp-lab.github.io/mmml-tutorial/schedule/

> FiR

» Multimodal Machine Learning: A Survey and Taxonomy, https://arxiv.org/pdf/1705.09406.pdf

» Foundations & Trends in Multimodal Machine Learning: Principles, Challenges, and Open
Questions, https://arxiv.org/pdf/2209.03430.pdf



https://arxiv.org/pdf/2301.04856.pdf
https://cmu-multicomp-lab.github.io/mmml-course/fall2022/
https://cmu-multicomp-lab.github.io/mmml-course/fall2022/
https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2023/
https://cmu-multicomp-lab.github.io/adv-mmml-course/spring2023/
https://cmu-multicomp-lab.github.io/mmml-tutorial/schedule/
https://arxiv.org/pdf/1705.09406.pdf
https://arxiv.org/pdf/2209.03430.pdf

WESS=T

O AFLEFS] (FESHHEF)

@ fHaR “SEENEES

@ FFEHEEINAE

@ KB



WESS=T

O AHLEFI (ZESHFEFS])



A

N 5iE) & (VQA) by GPT-4

GPT-4 visual input example, Extreme Ironing:

User What is unusual about this image?

Source: https://www.barnorama.com/wp-content/uploads/2016/12/03-Confusing-Pictures. jpg

GPT-4 The unusual thing about this image is that a man is ironing clothes on an ironing
board attached to the roof of a moving taxi.



AL

Introducing Sora — OpenAl’s text-to-video model

We're sharing our research progress early to get feedback
from people outside of OpenAl and to give people a sense
of what Al capabilities are on the horizon.

We will be taking several important safety steps before this
research becomes available in any of our products.

Sora is a new Al model that can create realistic and
imaginative scenes from text prompts.
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What i1s Multimodal?

___— mode —

In statistics, a multimodal distribution is a probability distribution with

more than one mode



What i1s Multimodal?
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What i1s Multimodal?

/ danguage

= Lexicon
= Words

= Syntax
= Part-of-speech
= Dependencies

= Pragmatics
= Discourse acts

coustic

= Prosody
= |ntonation
= Voice quality

= Vocal expressions

\ = Laughter, moans

isual

= @Gestures
= Head gestures
= Eye gestures
= Arm gestures

= Body language
= Body posture
= Proxemics

= Eye contact
= Head gaze
= Eye gaze

= Facial expressions
= FACS action units
= Smile, frowning

ouch
= Haptics

» Motion

hysiological

= Skin conductance

Electrocardiogram

obile

= GPS location
= Accelerometer

= Light sensors




What is a Modality?

Modality

Modality refers to the way in which something expressed or perceived.

=Y Raw Abstract
%A Modalities Modalities
from a sensor (closest from sensor) (farthest from sensor)
] Speech Language Sentiment
Examples: signal intensity
Image Detected Object

objects categories



What i1s Multimodal?

A dictionary definition...

Multimodal: with multiple modalities

A research-oriented definition...

Multimodal is the science of

heterogeneous and interconnected data



Heterogeneous Modalities

Information present in different modalities will often show
diverse qualities, structures and representations.

(

\

Modality A
Modality B

)

\

J

Examples:

B RARZS FRETS
Homogeneous Heterogeneous
Modalities Modalities

(with similar qualities) (with diverse qualities)

R R I R

Images Text from Language 277
from 2 2 different and vision
cameras languages

Abstract modalities are more likely to be homogeneous



Dimensions of Heterogeneity

Information present in different modalities will often show
diverse qualities, structures and representations.

—_— 7 . »
= e 0L
:

A teacup on the right of a laptop in a
clean room.




Dimensions of Heterogeneity

Information present in different modalities will often show
diverse qualities, structures and representations.
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A teacup on the right of a laptop in a
clean room.

@ Element representations: di

A ]’ ’D | -

@ ({teacup, right, apop, clean, room}

screte, continuous, granularity




Dimensions of Heterogeneity

Information present in different modalities will often show
diverse qualities, structures and representations.

A teacup on the right of a laptop in a
clean room.

@ Element distributions: density, frequency
A A A objects perimage

QO0OO®® words per minute



Dimensions of Heterogeneity

Information present in different modalities will often show
diverse qualities, structures and representations.

R » Latent
PN (implicit)
T
the right y

A teacup on the right ... EXplicit

(observable)

@ Structure: temporal, spatial, hierarchical, latent, explicit

i




Dimensions of Heterogeneity

Information present in different modalities will often show
diverse qualities, structures and representations.
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A teacup on the right of a laptop in a
clean room.

@ Information: abstraction, entropy



Dimensions of Heterogeneity

Information present in different modalities will often show
diverse qualities, structures and representations.

A teacup on the right of a laptop in a
clean room.

teacup — teacip
right — rihjt




Dimensions of Heterogeneity

Information present in different modalities will often show
diverse qualities, structures and representations.

A teacup on the right of a laptop in a
clean room.

@ Relevance: task relevance, context dependence

T ' —— recreational A teacup on the

‘ — living room right of a laptop
——»right-handed in a clean room.

workspace
— study room




Interconnected Modalities

@ Modality connections ModaltyA A A A A A
Modalities are often related >< N\
and share commonality Modaiy8 @ @ @ @ @

@ Modality interactions A leractions happer
Modality elements often Juring feIonce
interact during inference I eSPonse ;'

Slgnals “Inference” examples:

» Behavior perception
» Recognition task
* Modality translation



Interconnected Modalities

@ Modality connections ModaltyA A A A A A
Modalities are often related | >< I\\
and share commonality Modaiye @ @ @ @ @

N

A teacup on the right of a laptop
In a clean room.




Interconnected Modalities

@ Modality connections ModalityA A A A A A
Modalities are often related | >< I\\
and share commonality ModaiyB @ @ @ @ @
Statistical Semantic
ﬁ
Association Correspondence
= laptop

e.g., correlation,

e.g., groundin
CO-Ooccurrence 9.9 9




Interconnected Modalities

@ Modality connections ModaltyA A A A A A
Modalities are often related | >< I\\
and share commonality Modaiye @ @ @ @ @

A teacup on the right of a laptop
In a clean room.

__




Interconnected Modalities

@ Modality connections

Modalities are often related
and share commonality

Statistical
M
Association Dependency

— —
A—O A0
e.g., correlation, e.g., causal,
co-occurrence temporal

Modality A

Modality B

A AAAA
>< NN
¢ 0o o

Semantic

Correspondence
laptop

A—O

e.g., grounding

Relationship

used for
D e

e.g., function



Interconnected Modalities

@ )
@ Modality interactions A m @ - ﬁTn{z?:c%L )
Modality elements often O response | [esponses?
interact during inference _signals y (a taxonomy)
Unimodal
redundancy
A —
: —>
Is this O
indoors?

A teacup on the right of a
laptop in a clean room.




Interconnected Modalities

@ )
@ Modality interactions A m @ N ﬁTH{E:e:C%L )
Modality elements often O response | [esponses?
interact during inference _signals y (a taxonomy)
Unimodal
redundancy
A —
: / —>
sthis > M Yes!  ®
indoors? AO®—
A teacup on the right of a ‘
laptop in a clean room. Multimodal

/ enhancement



Interconnected Modalities

4 )
@ Modality interactions A Types of
@ w=== interaction
Modality elements often O response | [esponses?
interact during inference _ signals Py (& taxonomy)
Unimodal

Non-redundancy

Is this
a
living
room? A teacup on the right of a No, probably

laptop in a clean room. study room.




Interconnected Modalities

@ Modality interactions

Modality elements often
interact during inference

Is this
d
living
room? A teacup on the right of a

laptop in a clean room.

\signals

~

D @

response

Types of
™ interaction
responses?

J

/

> m Yes!

(a taxonomy)

Unimodal
Non-redundancy

A —
o >
ArO —

Multimodal
dominance




Taxonomy of Interaction Responses: A Behavioral Science View

s, Signal response : signal response
O !
A = a |
©, g a—> . ath —> Equivalence
@) response c 5
inputs =
o b— - ath — Enhancement
m 1
.
O atbh —> andO Independence
© a—>
° .
c atb —> Dominance
=
T b—> (O |
= atb —> (or(_]) Modulation
2
atb = /\ Emergence

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)



Dimensions of Modality Interactions

What are the dimensions
for digitally-represented
res onse
mOdaIitIeS’? Slgnals p
4

Interaction Responses:

* Redundancy

* Non-redundancy
= Dominance

= Emergence...



Dimensions of Modality Interactions

What are the dimensions
for digitally-represented
modalities?

o S TDE

signals

response

) 4

Interaction Mechanics:

Additive
multiplicative
Nonlinear
Causal,
Logical, ...



Dimensions of Modality Interactions

What are the dimensions
for digitally-represented
res onse

ll

Input modalities:

= Unimodal

= Bimodal

= Trimodal

= High-modal, ...



Dimensions of Modality Interactions

What are the dimensions
for digitally-represented
‘e response
modalities? S,g,,als
) Context:

= Structure context

= Task relevance

= Context dependence
= High-modal, ...



What i1s Multimodal?

Multimodal is the science of

heterogeneous and interconnected data ©



What is Multimodal Machine Learning?

Multimodal Machine Learning (ML) is the study of
computer algorithms that learn and improve through the use
and experience of data from multiple modalities

Multimodal Artificial Intelligence (Al) studies computer
agents able to demonstrate intelligence capabilities such
as understanding, reasoning and planning, through
multimodal experiences, and data

Multimodal Al is a superset of Multimodal ML



Prior Research in “Multimodal”

Four eras of multimodal research
» The “ " era (1970s until late 1980s)

» The “computational” era (late 1980s until 2000)
» The “interaction” era (2000 - 2010)

» The “ " era (2010s until ...)

% Main focus of this tutorial: last 5 years

1970 1980 1990 2000 2010 2020



Behavioral Study of Multimodal

Language
and gestures

David McNeill

“For McNeilll, gestures are in effect the
Speaker’s thought in action, and integral

components of speech, not merely
accompaniments or additions.”

1970 1980 1990

2000

McGurk effect

2010

2020



Behavioral Study of Multimodal




Multimodal Research Tasks

1970

Birth of
“Language & Vision”
research

Content- Video
based event
video recognition

retrieval (TrecVid)

Image
captioning
(revisited)

Audio-

visual
speech
recognition

1980 1990

Affect and
emotion
recognition

2000

Multimodal
sentiment
analysis

2010

2020



Multimodal Research Tasks

... and many
many more!

o
Visual

guestion Multimodal

answering dialogue
(image-based)

Image
captioning
(revisiteq)

Language,
Vision and
Navigation

Video Video QA & Large-scale Self-driving

video event

retrieval
(e.g., YouTube8M)

multimodal
navigation

captioning & referring
“grounding” expressions

2015 2016 2017 2018 2019



Multimodal Machine Learning

Language | really like this tutorial

Vision

Acoustic M""




Multimodal Machine Learning

Modality A A A A A A

Modaiys @ @ @ @ @
ModalityC [ [ ) 1 [

~

[ Representation ]

[ Alignment ]

O Unsupervised,

—

Q Self-supervised, [ Generation ]

O Supervised,
d Reinforcement,

[ Transference ]
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Task 1: Representation (3= 7<)

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

wsp This is a core building block for most multimodal modeling problems!

Individual elements:

Modality A A\ It can be seen as a “local” representation
or

Modality B @ representation using holistic features



Task 1: Representation (F=7RR)

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

Sub-challenges:

Fusion Coordination Fission
A © A © A ©

# modalities > # representations # modalities = # representations # modalities < # representations



Task 2: Alignment (%13%)

Definition: Identifying and modeling cross-modal connections between all
elements of multiple modalities, building from the data structure

msp Most modalities have internal structure with multiple elements

Elements with temporal structure: Other structured examples:

ModalyA A A A A A

ModaliyB @ @ @ @ @

~ Spatial Hierarchical



Task 2: Alignment (%13%)

Definition: Identifying and modeling cross-modal connections between all
elements of multiple modalities, building from the data structure

Sub-challenges:

: Aligned
Connections Representation Elements
900.. 900.. 00..
Explicit alignment Alignment + representation Segmentation of

(e.q., grounding) (aka, contextualized representation) individual elements



Task 3: Reasoning (3EIE)

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure

ool |-

Modality A A A

A ..
Modality B .><. L »




Task 3: Reasoning (1)

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure

Modality A A A

| Spiom

T

Y
o) i

——

o« @

A
|
O

a

| Spiom

SPJIOM

External
knowledge

S



Task 3: Reasoning (1)

Definition: Combining knowledge, usually through multiple inferential steps,
exploiting multimodal alignment and problem structure

Sub-challenges:

Structure Intermediate Inference External
Modeling concepts Paradigm Knowledge
r N
/1\ words 5\@.
U O g O =8 , @
A or i A @ > true N
A O [LIL] . )




Task 4: Generation (4 fX)

Definition: Learning a generative process to produce raw modalities that
reflects cross-modal interactions, structure and coherence

Sub-challenges:

Summarization Translation Creation

) O
®l e o—A —
‘ A A
/
. Reduction Maintenance Expansion
Information:

(content) > — N




Task 5: Transference (iT#%)

Definition: Transfer knowledge between modalities, usually to help the
target modality which may be noisy or with limited resources

AAAAA

Enriched Modality A

only available
during training
Transference

I
A A A A 4 00000

Modality A Modality B




Task 5: Transference (iT#%)

Definition: Transfer knowledge between modalities, usually to help the
target modality which may be noisy or with limited resources

Sub-challenges:

f Co-learning Co-learning
Transfer via representation via generation
Y y O
| 1 ;

—1 i
1 1 [ 1
A AO A O A




Multimodal Machine Learning Tasks

Representation

/I\
B

A O,

@\Alignment
4 B

A
A

\.

X

A—©O

Reasoning

f

[
A
[
A

/

A O

\

J

/
\

Generation

4 )
4
o—A

\. /

Transference

S
-
\A .)
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Which word can describe this figure in the

language of modality interaction?

(a) Equivalence.
(b) Dominance.

(c) Emergence.

(d) Independence.
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