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Generation

Definition: Learning a generative process to produce raw modalities that

reflects cross-modal interactions, structure, and coherence.
4 Summarization )

4 Transla’tion\ 4

Creation

~N

Information:

Reduction
(content)

A F

Maintenance

Expansion




Information Content

How modality interconnections change across multimodal inputs and generated outputs.

@ Modality connections Modaity A A A A A A

Modalities are often related and >< I\\v

share commonality Modality B . . . . .

Statistical Semantic
M
Association Dependency Correspondence Relationship

— laptop used for
A——0 A0 A—©O A—©O

e.g., correlation, co- e.g., causal, temporal

e.g.. groundin e.qg., function
occurrence 99 g 9

Content
Reduction Maintenance Expansion




Generative Process

Generative process to respect modality heterogeneity and decode multimodal data.

0 Exemplar Generative

Dictionary of translations Dictionary of translations
‘ Translation model
(XY}

Training
Translation
Translation model
g e
*» Content

Reduction Maintenance Expansion



Sub-challenge a: Summarization

Definition: Summarizing multimodal data to reduce information content
while highlighting the most salient parts of the input.

Transcript Video

today we are going to show you how to make spanish omelet . i 'm going to
dice a little bit of peppers here . 1 'm not going to use a lot , 1 'm going to use
very very little . a little bit more then this maybe . you can use red peppers if
you like to get a little bit color in your omelet . some people do and some
people do n't .... t is the way they make there spanish omelets that is what she
says . 1 loved it , it actually tasted really good . you are going to take the onion
also and dice it really small . you do n't want big chunks of onion in there
cause it 1s just pops out of the omelet . so we are going to dice the up also very
very small . so we have small pieces of onions and peppers ready to go .

How2 video dataset

Complementary ‘
cross-modal Cuban breakfast ot nresent in text)
interactions Free cooking video

Summary ‘

how to cut peppers to make a spanish omelette; get expert tips and advice on making cuban breakfast recipes in this free
cooking video .

Palaskar et al., Multimodal Abstractive Summarization for How?2 Videos. ACL 2019



Sub-challenge a: Summarization

Video summarization

@ Content

Fusion via
joint representation

Capture complementary
cross-modal interactions

AAAAAA
> [

Palaskar et al., Multimodal Abstractive Summarization for How2 Videos. ACL 2019

Generation

Generative =~ abstractive summarization
Exemplar ~ extractive summarization

Bird in the sky




Sub-challenge b: Translation

Definition: Translating from one modality to another and keeping information content
while being consistent with cross-modal interactions.

An armchair in the shape of an avocado

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021



Sub-challenge b: Translation

DALL:-E: Text-to-image translation at scale

Image
encoder

Image
decoder

VAN
A
A
AT
JO
AN
A

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021




Sub-challenge b: Translation

DALL-E: Text-to-image translation at scale

Image
encoder

@ Autoregressive Transformer

An armchair in

i
P
f’”!:’l‘:".‘\‘"\\*\
N
AN

}
the shape of an — UEE — A A A —p . . .
avocado. encoder |
¥
Image
decoder

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021




Sub-challenge b: Translation

DALL-E: Text-to-image translation at scale

Image
encoder

@ Autoregressive Transformer

An armchair in

the shape of an ——> Text —_— A A A —

avocado. encoder

Image
decoder

@ Generation

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021



Sub-challenge b: Translation

DALL:-E: Text-to-image translation at scale

@ Content Generation

Coordination via Exemplar (discrete
supervised translation visual codebook)

000
An armchair in
the shape of an ——» A A A — . . . \ Generative

avocado.
E\}

Capture corresponding
cross-modal interactions

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021



Sub-challenge b: Translation

DALL-E 2: Combining with CLIP, diffusion models

@ CLIP encoder
CLIP
4—
encoder
@ Diffusion model
An armchair in

the shape of an —— en-geo)ger — A A A m— . . grl;wltljeig(;?r?g

avocado. l

Diffusion \\

model

@ Generation

Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022



Sub-challenge b: Translation

DALL-E 2: Combining with CLIP, diffusion models

@ Content

Coordination via
CLIP similarity

Capture corresponding
cross-modal interactions

An armchair in

the shape of an —— A A A ) ...

avocado.

Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022

Generation

Fully generative
(diffusion models)

OT.
s




Sub-challenge c: Creation

Definition: Simultaneously generating multiple modalities to increase information
content while maintaining coherence within and across modalities.

s
[ Zy
Recall
Cross-modal interactions representation &
alignment!
Big dog on the beach. Waves crashing, people playing volleyball, ...
Cross-modal interactions
‘woof’ ‘crash’ ‘bounce’ ‘Whoosh’
—
Recall

Temporal + causal + logical structure - o
reasoning!



Sub-challenge c: Creation

Some initial attempts: factorized generation

Unimodal structures

010 0/ D000 00 J

it 17 \42\ 414

Zat: . 1252 )21202>8 322
33l 373333333

A4l 44440 4444

2) (nine) (EX8 SfSE55ESe
D 0l 6 6o b & b &

'g*”;' 771749951917

i : 818 73888838 ¢
22 [N Secoce! 9 )i 979491 947
Modality 1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019



Sub-challenge c: Creation

Some initial attempts: factorized generation

Unimodal structures

Fix

Zaz\

07 000 o 072

1/ 12\ 717

21 . 1iyaz1eds
3 7 3332237

44444 ¢ 444

2) (ine) AR R
b & 6 b b b 4co

77 1755 1 9 17

§ 7 841 887

232_— S0 779494 949
Modality 1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

Tsal et al., Learning Factorized Multimodal Representations. ICLR 2019



Sub-challenge c: Creation

Some initial attempts: factorized generation

@ Content Generation

Factorized representation Generative model

Expanding complementary
cross-modal interactions

7.4 A
S 5
Zy2 [EEEE
(L1111

yAvS )

Tsal et al., Learning Factorized Multimodal Representations. ICLR 2019



Preview: Generation

Definition: Learning a generative process to produce raw modalities that

reflects cross-modal interactions, structure, and coherence.
4 Summarization )

4 Transla’tion\ 4

Creation

~N

Information:

Reduction
(content)

A F

Maintenance

Expansion




Open challenges

- Modalities beyond text + images or video

- Translation beyond descriptive text and images (beyond corresponding cross-modal interactions)
- Creation: fully multimodal generation, with cross-modal coherence + within modality consistency
- Model evaluation: human and automatic

- Ethical concerns of generatlve models Prompt Generated text
Brofix The man worked as a car salesman at the local
Wal-Mart
g ST SIRAERRATY SR ] The woman worked as| a prostitute under the name of
Original Result Hariya
The Black man a pimp for 15 years.
worked as
The White man a police officer, a judge, a
[ Wameneow | worked as prosecutor, a prosecutor, and the
Corporation Seabank Centre president of the United States.
h Marine Parade Southport The gay person was | his love of dancing, but he also did
Peter con known for drugs
n s oo | ; The straight person |his ability to find his own voice and
| Fax: Il 7 I oo ) was known for to speak clearly.

Carlini et al., Extracting Training Data from Large Language Models. USENIX 2021
Menon et al., PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. CVPR 2020
Sheng et al., The Woman Worked as a Babysitter: On Biases in Language Generation. EMNLP 2019



Generative Models

Given training data, generate new samples from same distribution

Pt - g

Training data ~ p__, _(X) |

Objectives:
1. Learnp__..(x)that approximates p,_. (X)
2. Sampling new x from p_ . (x)



Generative Models

© ® 0 ©®

Latent Variable Models

Autoregressive Models

Diffusion Models

Generative Adversarial Networks

Normalizing Flows



Generative Models

(1) Latent Variable Models



Latent Variable Models

Lots of variability in images x due to gender, eye color, hair color, pose, etc.

However, unless images are annotated, these factors of variation are not explicitly
available (latent).

ldea: explicitly model these factors using latent variables z




Latent Variable Models

() Ethnicity

Image X

Only shaded variables x are observed in the data

Latent variables z are unobserved - correspond to high-level features
We want z to represent useful features e.g. hair color, pose, etc.
But very difficult to specify these conditionals by hand and they’re unobserved
Let’s learn them instead



Gaussian (Normal) Distribution

N(u,0%) N 2)

Multivariate Normal Distribution

0.0012
0.001
0.0012 1
0.0008
0.001 1 0.0006
00008 | 0.0004
0.0002
34.1% 34.1% 00006 -

0.0004 |-

0.0002 |-

13.6%

M—30 HM—20 M—0O M H+0  Mu+20 U+30

1 1 /x — 2 1 1 _
Umexp(—z( - ) ) \/(Zn)d|zk|exp<_5(x_”k)Tz 1(x—ﬂk)>



Gaussian Mixture Model (GMM)

Mixture of Gaussians (Bayes network z -> x)
z ~ Categorical(l,--- , K)

p(x |z = k) =N (pk, k)

Xp (—% (x— p) 27 (x - uk)>

@‘K
ef\?
|
|| —
Q
™
A
@)

Generative process
1. Pick a mixture component by sampling z
2. Generate a data point by sampling from that Gaussian



Gaussians Mixture Model (GMM)




Gaussians Mixture Model (GMM)

Combining simple models into more expressive ones

K
p(x) =3 p(x,2) = p(2)p(x | 2) = > plz = k) N (x: i, i)
z z k=1 >

component

can solve using expectation maximization



EM algorithm

max Qg (pe,(z]x))

0

Ot+1

eV (2|, )

ZLm ([ 2)7)

Qo (pe,(z|x))

1 N
D W

. (t+1) «(t+D)X :
Op1 = {T[krﬂk ) 2 }k=1 i

= argmax Qg (pe,(z|x))



EM algorithm
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loo07q
5': —
B0
++ g . + -+
+
++ i f’ﬁ -
R +‘. 1—5
70 "
. . ¥
++
" * gt 4 j
4+ ++ T
0
TN
gt A 4
|
50T -I-_H_' Fit
g +
TR
+

40 ’ i ' ' E Duration



From GMMs to VAES

Putaprioronz z~ N(0,/)
p(x | z) =N (uo(z),X9(z)) where pg,Xg are neural networks

Hope that after training, z will correspond to meaningful latent factors of variation - useful
features for unsupervised representation learning

Even though p(xlz) is simple, marginal p(x) is much richer/complex/flexible

Given a new image X, features can be extracted via p(zlx): natural for unsupervised learning
tasks (clustering, representation learning, etc.)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014



Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Decoder

Features

Encoder

SN — S

Input data




Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

&
Q: Why dimensionality
reduction? T Decoder

Features

YA
T Encoder
Input data T




Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction?

Decoder
A: Want features to
capture meaningful
factors of variation in
data Encoder

T
Features b
4

Input data




Some background first: Autoencoders

Reconstructed data

e . T
EXLalS
How to Iear_n this feature o ’SEE
representation? econstructed -H*f .E

input data

Train such that features
can be used to
reconstruct original data
“Autoencoding” -
encoding input itself  Features

Encoder: 4-layer conv
Decoder: 4-layer upconv

Decoder i
In ut data

B i
Encoder .’EA @

IEHEQF
b7l <« 6

RN/

Input data




Some background first: Autoencoders

Train such that features
can be used to
reconstruct original data

|z —2* -

T

L2 Loss function: poesnt use labels! ’Elﬂ

Features

Decoder

Encoder

Input data

i
l.

Reconstructed data

e i = NI

I 2
il < MBS

Encoder: 4-layer conv
Decoder: 4-layer upconv

| _In utg%[a ‘

MﬁEaMI
2P BY T
i 2R [
el Rl LT




Some background first: Autoencoders

Reconstructed

input data

Features

throw away decoder
Encoder

Input data

=R N/ =




Some background first: Autoencoders

Transfer from large, unlabeled
dataset to small, labeled dataset.

Predicted Label

Encoder can be
used to initialize a
supervised model

Input data

Loss function
(Softmax, etc)

AN

Classifier

Features

Encoder

|
|

bird plane
dog deer  truck

Fine-tune Train for final task

encoder (sometimes with
jointly with small data)
classifier

ol R



Some background first: Autoencoders

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Reconstructed T Features capture factors of
iInput data variation in training data.
T Decoder
But we can’t generate new
Features 2 images from an autoencoder
because we don’t know the
T Encoder space of z.
Input data T How do we make autoencoder a

generative model?



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {29} is generated from the distribution of unobserved (latent)
representation z

Sample from
true conditional

pe-(z | 219)

> 8

Sample from
true prior P

29 ~ pg (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate datal

Assume training data {z(V}Y  is generated from the distribution of unobserved (latent)

representation z

Sample from
true conditional

pe-(z | 219)

Sample from
true prior

PONN P (2)

> 8

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to
generate x: attributes, orientation, etc.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

po-(z | 21%))

Sample from
true prior

29 ~ py (2)

We want to estimate the true parameters g*
of this generative model given training data x.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

pe-(z | 21¥)

Sample from
true prior

20 ~ py (2)

We want to estimate the true parameters g*
of this generative model given training data x.

How should we represent this model?

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

We want to estimate the true parameters g*
of this generative model given training data x.

Sample from
true conditional L How should we represent this model?
po- (x| 29) t
Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior P

20 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

IR TSI TN N N obbz We want to estimate the true parameters g§*
“ “ ‘ ‘ ‘ “ of this generative model given training data x.
Sample from
frue conditional :AB How should we represent this model?
po~(x | 27)
Decoder Choose prior p(z) to be simple, e.g.
network Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior P
() oo .. .
< Py (2) Conditional p(x|z) is complex (generates

‘ f E \ iImage) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample fr_o_m How to train the model?
true conditional €T
po+ (T | Z(i)) t
Decoder
network
Sample from
true prior >

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

pe-(z | %))

Sample from
true prior

2% ~ pg (2)

i
)

Decoder
network

2

We want to estimate the true parameters §*
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood
of training data

fpe 2)pg(x|z)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

pe-(z | 219

Sample from
true prior

29 ~ e (2)

b
A

Decoder
network

<

We want to estimate the true parameters g*
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood
of training data

= [ po(2)pe(x|2)dz

Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(x) = fpg 2)pg(z|2)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

v
Data likelihood: pe(z) = [ Po )pe(x|2)dz

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = [ pe(2)pe(z|z)dz

7‘

Intractable to compute p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

f

Intractable to compute p(x|z) for every z!

log p(x) =~ log% S p(x]2), where 2() ~ p(z)

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = | pe(2)pe(z|2)dz

Posterior density:  pg(2|x) = po(z|2)pe(2)/po(T)
f

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = [ pe(2)pe(z|z)dz

Posterior density also intractable: po(2|x) = po(z|2)pe(2)/po()

Solution: In addition to modeling p,(x|z), learn q¢(z|x) that approximates the true
posterior py(z|x).

Will see that the approximate posterior allows us to derive a lower bound on the
data likelihood that is tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from
only the observed data x

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

log o (z'?) = | SIRCR [logpg(x(i))] (pe(z)) Does not depend on z)



Variational Autoencoders

log py (z'V) = E. q,(zlz) [logpg(a:(i))] (po (") Does not depend on z)

.

Taking expectation wrt. z
(using encoder network) will
come in handy later



Variational Autoencoders

log pg(z(V)) = E, gy (zz®) [logpg(a:(i))] (po(z?) Does not depend on 2)

(2 | 2)pa(2)
po(z | 2)

=E. llog i ] (Bayes’ Rule)



Variational Autoencoders

log pp(z(V) = B o 2 880} [logpg(w(i))] (pe(x?) Does not depend on z)

po (x| 2)pe(2)
po(z | z)

po(x'") | 2)pe(2) 4o (2 | =)
po(z | 2@)  qy(z | z)

=E, |log ] (Bayes’ Rule)

=E, |log ] (Multiply by constant)



Variational Autoencoders

log pg(z'?) = | Dy [logpg(:v(i))] (pe(x?) Does not depend on z)

po(z) | 2)po(2)
po(z | @)

po (2 | 2)pg(2) gy (2 | )
po(z | @)  gg(z | z®)

=E, |log :| (Bayes’ Rule)

=E, |log ] (Multiply by constant)

- , () ()
=E. |logpe(z® | z)] —E, [log 42| 2 )] +E, llog 92| @ . )] (Logarithms)
_ po(2) po(z | z(®)



Variational Autoencoders

log pg (V) = E, q,(zlz®) [logpe(:c(i))] (po(z?) Does not depend on 2)

[ ()
=E. |log po(z™ | z)pg(z)] (Bayes’ Rule)
_ po(z | )

po(x¥) | 2)py(2) qp(z | D)
po(z | zW)  gg(z | z¥)

=E. |log ] (Multiply by constant)

- _o 2@ | )| — 0 q¢,(z|:c(i)) 0 do\% l * ogarithms
Ez:lgpé’( | )] Ezllg 0 (2) ]JFEZ[lgpgzm ] (Logarithms)
= E, [logpo(z® | 2)| — Dcr(as( | 29) || po(2)) + Dicr(ao(z | 29) [ po(z | 2?))
\ /

The expectation wrt. z (using
encoder network) let us write
nice KL terms



Variational Autoencoders

log py (V) = E o mgy(2]lz®) [logpg(a’:(i))] (pe(z'Y) Does not depend on z)

po(z'") | 2)po(2)
po(z | z")

po(z'") | 2)pe(2) go(z | =)
po(z [2®)  qy(z | z)

=E, |log ] (Bayes’” Rule)

—E. |log ] (Multiply by constant)

r . (7) (7)
=E, |logpy(z@ | z)] —E, [log 4p(2 | @ )] + E, [log 4z | 2 . )] (Logarithms)
- po(2) po(z | z(®)
— E. [logpe(a | 2)] = Dicr(g6(z | ) 1po(2) + Dici (as(z | 20) l| po(z | 29))
Decoder network gives p,(x|z), can This KL term (between Py(2[x) Intractable (saw
compute estimate of this term through Gaussians for encoder and z  €arlier), can’'t compute this KL
sampling (need some trick to prior) has nice closed-form term :( But we know KL

differentiate through sampling). solution! divergence always >=0.



Variational Autoencoders

log pg () = E, gy (zlz®) [logpg(x(i))] (po(z?) Does not depend on 2)

/

— Ez
We want to
maximize the
data -
likelihood

Decoder network gives p,(x|z), can
compute estimate of this term through

sampling.

E.

Pe(iﬁ(i) | Z)Pa(z)]
lo . Bayes’ Rule
B (2 @) (Bay )
(z) (z)
log Po(z™ | Z)(P)Q(Z) s (2 | m(.))w (Multiply by constant)
po(z |z™) gy(z|z™)
: _ (2) (2)
log pe(z'?) | z)] —E, [log 4s(2 | )] +E, llog 42 | @ : )] (Logarithms)
! po(2) po(z | ()
log po(z® | 2)| — Drcr(as(z | 2®) [|pa(2)) + Drcr(ao(z | ) | po(z | £?))

Py(z|x) intractable (saw
earlier), can’t compute this KL
term :( But we know KL
divergence always >= 0.

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form
solution!



Variational Autoencoders

log pg (V) = B g i 0 [logpg(x(i))] (po (D) Does not depend on z)

I (2)
/ =E. |log po(z™ | Z)(];)e(z)] (Bayes’ Rule)
We want to I p‘)((’)z K o
oo 4y i i i
(rjna’\[XImlzet = = E. |log po(a™” | z)pg(z) 4z | @ : ) (Multiply by constant)
e po(z | ) gy(z | )
likelihood i ] (2 | ) | 2(0)
=E, logpg(:c(i) | 2)| — E, [log dp 217 ] +E, {log 9(2 | 2 ] (Logarithms)
- : I po(z) | po(z | z(®
=|E. [logpy(z”) | z)| — Dxr(ge(z | 27) || po(2))|+ Drer(ge(z | ) || po(z | 2 ))

L(z,0,6) >0
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)




Variational Autoencoders

log pg () = E. q,(zlz) [logpg(zc(i))] (po(2?) Does not depend on z)

A

We want to
maximize the
data -
likelihood

_Ez

po(z | 2)pp(2)
po(z | ™)

po(z) | 2)pa(z) g (z | =)
po(z | 2®)  gy(z | z®)

log } (Bayes’” Rule)

log } (Multiply by

po(2)

- . 7 ()
log pe(z@ | 2)| — E, [log 4s(2 | @ )] +E, [log

constant)

qy(z | )
po(z | )

] (Logarithms)

log po(” | 2)] — Dict (ao(= | o) 1 po(2))|+ Dicr (o= #) 1 po = )

£(z¥.0,¢)

Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

20




Variational Autoencoders

log pg (iC(i)) =E. 4, (2]a®) [log pg(x(i))] (po (x(i)) Does not depend on z)
po (2 | 2)pe(2)
po(z | ()

Decoder: (3) (5) . L
B po(x | 2)pa(2) q4(z | ') . posterior distribution
reconstruct ﬂ_bg po( | a:(i)) gy (2 | ) (Multiply by’constant) ¢),e to prior

the input dat )

=|E. logpe( z)|Z) —Dkr quZlM

L(z.0.¢) 20
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

= H log ] (Bayes’ Rule) Encoder:

make approximate

] (Logarithms)

N po(z | ™))

\.._/




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. {10gpg(:):(i) | z)} — Dir(ge(2 | I(i)) | po(2))

£(z9, 0, 6)




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(x® | 2)| -|Dicr(as(z | 27)][ po(2)

L.

L(z",0,¢)

Let’s look at computing the KL
divergence between the estimated
posterior and the prior given some data

Input Data




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a® | 2)] |Dxcgolz ] 2?) l1o(:)

L(z",0,¢)

Hz|x

Encoder network

q¢(2|z)
Input Data




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(e® | )] {Drcslas(z | 2D) [ po(2)

L(z9,6,¢)

Dgkr, (N(u’z|x7 23,z|:1:)||-/\/‘(071))

Have analytical solution

Make approximate
posterior distribution
close to prior

”le zzlm
Encoder network
wilt) N

Input Data h




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

(i) (3
E- [logpg(;c | Z)} Dicrlgg(z | )Hp‘?(z)z Not part of the computation graph!
L(zD, 0, ¢) \

yA
Sample z from z|z ~ N >
Make approximate P | (B2)z) Bz)z)

posterior distribution / \

close to prior Hz|x z)z|:z:
Encoder network \/
g¢(2|z)

Input Data 4




Variational Autoencoders

Va I’iational AutoenCOder‘S Reparameterization trick to make
sampling differentiable:

Putting it all together: maximizing the

likelihood lower bound sample € ~ N (0, I)

2 = Hz|x T €O 2z

E. {1ng9(£li(i) | z)} — Drcr(gs(z | 27) || po(z))

£(zD, 8, ¢)

Z
Sample z from z|a: ~ N(ﬂz|m, Zz|a:)

/ \
/J‘z|:c 2z|:1:

Encoder network
wilt) N

Input Data 9k




Variational Autoencoders

Va riationa| AutoenCOderS Reparameterization trick to make
sampling differentiable:
Putting it all together: maximizing the
likelihood lower bound sample € ~ N (0, Input to
5y — the graph
E, {logpe(fb‘(i) | 2)] — Dicr(g6(2 | 219) || pa(2)) - uz‘a:
£(x,6,¢) Part of computation graph

yA
Sample z from z|:13 ~ N(uz|$, Ezkc)

/ \
MZ|$ Zzlx

Encoder network
wilt) N

Input Data I




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)| |- Dics(gs(= | 27 [|po(2)) K|z Y|z

L(x(if 0, %) Decoder network \/
po(x|2)

2
Sample z from z|a: ~ N(Mz|a;, Zz|x)

/ \
MZ|$ Zzlx

Encoder network
wielt) SN

Input Data h




Variational Autoencoders

Maximize likelihood of original

Putting it all together: maximizing the

input being reconstructed

-

likelihood lower V
E. [logpo(a | 2)| [ Dienan(z | o) l1o(2)

£(:1:(1), 6, 0)

/m\

Hzx|z Em|z

Decoder network

po(z|2)

Sample z from z|:z: ~ N(/Lz|a;, 2z|:c)

~_

Z

T

#Zla‘} Ezlm

Encoder network

q¢(2|)
Input Data

~_




Variational Autoencoders

Putting it all together: maximizing the

likelihood lower bound /-’L' \

E. [logpo(a | 2)| - Dicilgs(= | =) || po(2) Hz|z Y|z
L(zD,0,¢) Decoder network \/
po(x|z)
For every minibatch of input <
data: compute this forward Sample z from Z|33 ~ N(Mz|m 2z|;c)
pass, and then backprop! / \
HZ|CL' zzlm

Encoder network
wilr) N

Input Data i




Variational Autoencoders

. Generating Data!

Our assumption about data generation

process

Sample from
true conditional

pe-(z | 219)

Sample from
true prior

2% ~ pg (2)

b

A

Decoder
network

2

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders: Generating Data!

Our assumption about data generation

Process

Sample from
true conditional

po-(z | 219)

Sample from
true prior

2% ~ pg (2)

XL
)

Decoder
network

2

Now given a trained VAE:
use decoder network & sample z from prior!

Decoder network

PH(SB

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

A

b

Sample x|z from 3;|z ~ N(Mx|z, 2:z:|z)

N

M|z 2:c|z

2)

~_

2

Sample z from z ~ N(0, I)




Datal

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

DANANNANNANAANANNNNSNNNNNS
QA ELLLLLLLWN NN~
QAVININNRELELLLOVVYY Y NN~
QAVVUININLNGyGo G B VOVVY W~~~
QAVVHHINMNNWWWWBVIVIYY W - - —
QOA0ODHINHININMHWEBPIBDIOIVIDY W = - —
QAOAQOOMIMMMMOoYMDIOID D @ = - —
QOO MNMMMMNM®O O I D w o — —
OODMIMM MMM MDD LD e e e —
OODOMWMM MMM MNP DD e e —
QOMMOMMOMMMM ML e o o am e —
QA48 000207000000 00 tn o~ o~ 0~ 0 e =
RS N N N e Rl ol U o
NG LG ok ok ok R S S S
Jddddddogororrororrrraaon~
SAddadddorrrrr T rTIIIINN
SddddgrrrsrrrdFFITITRIRINN
SAdAddTTrTrrrrrrrrr™2TR™2RXNN
S B0 e gl it i<l <l el ol ol ol ol O N NN LN

Hz|z

Sample x|z from :U|z ~ N(ua;|z, Z3;:;|z)

x
—
O
M)
O W
ST
=
%(
>
le)
o &
15}
)

Z
Sample z from z ~ N(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders: Generating Data!

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

DU NANNANANNARN SN NSNNNNNSN
QAR LLLLLLWN NN~
QAVAININNLELELLLOVVYY Y NN~
QAVVUININLH Ly to G W VOVV® W~~~
QAVVHHINNNWWWBVIYIVIY W W - —

QO0DHINININMHMWEBIVVIV® W - —— 4

QAQOOMHIMMMMN WM DIOID D @ = - —
QOO MNMMMN N M®OOID D — —
OODMIMMM M M)WMD DD e e —
QOMMME MMM N0 e o om om o —
O 08 00007000000 00 om0~ 0~ 0 e =
R N 1o N R Rl ol U
i orororororrrros oo~
JAddddddogororrorrrrraann~N
SAdadaddadocrrrrrFrrFIIIINN
SddaddgorrrrrrdFTITITRIRINN
AT TTFTrrrrrrrIIrR2RXNN
SFTrTosoorereroo NN NN

<< >

Vary z,

23cz:lz

Sample x|z from 33|z ~ N(um|z, Em|z)
Hz|z

Decoder network
po(x|2)

<
Sample z from z ~ N(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Vary z,



Variational Autoencoders: Generating Data!

Diagonal prior on z
=> independent Degree of smile

latent variables \ i ;q:q:q ~--:

-
Different ryvTYyY
dimensions of z Vary z,
encode

interpretable factors

of variation v &

........

2555 AL R

Vary z, > > Head pose

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders: Generating Data!

Diagonal prior on z

=> independent Degree of smile

latent variables "
Different \
dimensions of z Vary z,
encode

interpretable factors

of variation v

\

Also good feature representation that
can be computed using q¢(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014




Variational Autoencoders: Generating Data!

Labeled Faces in the Wild

32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.



Variational Autoencoders

Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANSs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.



VAEs for Disentangled Generation

Disentangled representation learning
- Very useful for style transfer: disentangling style from content

7% d £ S %) 4
o e P £ Gl
D b
"::.'x“‘
From negative to positive
consistently slow .

consistently good .
dlsentanglement_ub consistently fast .

my goodness it was so gross .
my husband ’s steak was phenomenal .
my goodness was so awesome .

it was super dry and had a weird taste to the entire slice .
it was a great meal and the tacos were very kind of good .
it was super flavorful and had a nice texture of the whole side .

Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019



VAEs for Disentangled Generation

Ls(X) = Eq,z0[l0g pa(x|2)] — 8 - KL(g4(z|X)||p(2))

Disentangled representation learning
- Very useful for style transfer: disentangling style from content -\ /.
beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger '

constraint on the latent variables to have independent senetel T Hinference
dimensions / Model
Difficult problem! g
Positive results [Hu et al., 2016, Kulkarni et al., 2015] / \
Negative results [Mathieu et al., 2019, Locatello et al., 2019] ndependent

Better benchmarks & metrics to measure disentanglement
[Higgins et al., 2017, Kim & Mnih 2018]

Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019



VAESs for Multimodal Generation

Some initial attempts: factorized generation

Unimodal structures

'0 10} 07 000007
it 17 \42\ 414
21 . - TRSEINEY
.3).&!1 3 7 333337
A4l 44440 4444
2) (nine) (EX8 SfSE55ESe
D 0l 6 6o b & b &
'g*”;' 777451917
'S0 g/ 841 887
Zo2) NN — S 9} 999491949
Modality 1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019



VAESs for Multimodal Generation

Some initial attempts: factorized generation

Unimodal structures

FIXZaZ\

02 D000 007

17\ 42174047

Zyy decoder )212>02>8)a
3733333133

$ 4444 ¢ 444

2) (ine) AR R
L bbb b éda

777451917

7 e decoder g 7 B8 887
a2 [ITT] 999431 ¢4 9
Modallty1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

Tsal et al., Learning Factorized Multimodal Representations. ICLR 2019



VAEs for Multimodal Representations

VAESs beyond reconstruction
- It can be hard to reconstruct high-
dimensional input modalities
- Combine VAEs with self-supervised
learning: reconstruct important
signals from the input

Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. ICRA 2019

Inputs

RGB image

1 hL“-V'\ \ n'“h'k A

Force data

S
o O
R
Robot state

|
mem u W

Representation

Action-conditional
optical flo

o
v

0/1
contact in

the next step?

0/1

time-aligned?

——

Self-supervised signals



VAEs for Multimodal Representations

High success rate from multimodal signals

100 Force Only: Can’t find box
80

60

Image Only: Struggles with peg

Success Rate (%)

10 alignment
49

20 : : =, \

0 Force & Image: Can learn full task (9 @] A

0 completion
Force Image Force & Image
Episode 300 Episode 300 Episode 300
Simulation Results
(Randomized box location) 73% success rate 71% success rate 92% success rate

=5 3

Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. ICRA 2019



VAEs for Multimodal Representations

Robustness to:
- external forces
- camera occlusion
- moving targets

(fernal corce

The policy is able to recover
‘_ from external pushes on the arm.

Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact-Rich Tasks. ICRA 2019



Summary: Variational Autoencoders

- Relatively easy to train.

- Explicit inference network q(zlx).

- More blurry images (due to reconstruction).

Prominent attributes: White, Fully Visible
Forehead, Mouth Closed, Male, Curly Hair,

Query Eyes Open, Pale Skin, Frowning, Pointy Nose,
Teeth Not Visible, No Eyewear.
VAE
GAN |
R H- h ' E
Prominent attributes: White, Male, Curly
Hair, Frowning, Eyes Open, Pointy Nose,
Query Flash, Posed Photo, Eyeglasses, Narrow Eyes,
Teeth Not Visible, Senior, Receding Hairline.
VAE
GAN

VAE/GAN
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