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Generation

Definition: Learning a generative process to produce raw modalities that

reflects cross-modal interactions, structure, and coherence.
4 Summarization )

4 Transla’tion\ 4

Creation

~N

Information:

Reduction
(content)

A F

Maintenance

Expansion




Information Content

How modality interconnections change across multimodal inputs and generated outputs.

@ Modality connections Modaity A A A A A A

Modalities are often related and >< I\\v

share commonality Modality B . . . . .

Statistical Semantic
M
Association Dependency Correspondence Relationship

— laptop used for
A——0 A0 A—©O A—©O

e.g., correlation, co- e.g., causal, temporal

e.g.. groundin e.qg., function
occurrence 99 g 9

Content
Reduction Maintenance Expansion




Generative Process

Generative process to respect modality heterogeneity and decode multimodal data.

0 Exemplar Generative

Dictionary of translations Dictionary of translations
‘ Translation model
(XY}

Training
Translation
Translation model
g e
*» Content

Reduction Maintenance Expansion



Sub-challenge a: Summarization

Definition: Summarizing multimodal data to reduce information content
while highlighting the most salient parts of the input.

Transcript Video

today we are going to show you how to make spanish omelet . i 'm going to
dice a little bit of peppers here . 1 'm not going to use a lot , 1 'm going to use
very very little . a little bit more then this maybe . you can use red peppers if
you like to get a little bit color in your omelet . some people do and some
people do n't .... t is the way they make there spanish omelets that is what she
says . 1 loved it , it actually tasted really good . you are going to take the onion
also and dice it really small . you do n't want big chunks of onion in there
cause it 1s just pops out of the omelet . so we are going to dice the up also very
very small . so we have small pieces of onions and peppers ready to go .

How2 video dataset

Complementary ‘
cross-modal Cuban breakfast ot nresent in text)
interactions Free cooking video

Summary ‘

how to cut peppers to make a spanish omelette; get expert tips and advice on making cuban breakfast recipes in this free
cooking video .

Palaskar et al., Multimodal Abstractive Summarization for How?2 Videos. ACL 2019



Sub-challenge a: Summarization

Video summarization

@ Content

Fusion via
joint representation

Capture complementary
cross-modal interactions

AAAAAA
> [

Palaskar et al., Multimodal Abstractive Summarization for How2 Videos. ACL 2019

Generation

Generative =~ abstractive summarization
Exemplar ~ extractive summarization

Bird in the sky




Sub-challenge b: Translation

Definition: Translating from one modality to another and keeping information content
while being consistent with cross-modal interactions.

An armchair in the shape of an avocado

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021



Sub-challenge b: Translation

DALL:-E: Text-to-image translation at scale

Image
encoder

Image
decoder

VAN
A
A
AT
JO
AN
A

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021




Sub-challenge b: Translation

DALL-E: Text-to-image translation at scale

Image
encoder

@ Autoregressive Transformer

An armchair in

i
P
f’”!:’l‘:".‘\‘"\\*\
N
AN

}
the shape of an — UEE — A A A —p . . .
avocado. encoder |
¥
Image
decoder

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021




Sub-challenge b: Translation

DALL-E: Text-to-image translation at scale

Image
encoder

@ Autoregressive Transformer

An armchair in

the shape of an ——> Text —_— A A A —

avocado. encoder

Image
decoder

@ Generation

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021



Sub-challenge b: Translation

DALL:-E: Text-to-image translation at scale

@ Content Generation

Coordination via Exemplar (discrete
supervised translation visual codebook)

000
An armchair in
the shape of an ——» A A A — . . . \ Generative

avocado.
E\}

Capture corresponding
cross-modal interactions

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021



Sub-challenge b: Translation

DALL-E 2: Combining with CLIP, diffusion models

@ CLIP encoder
CLIP
4—
encoder
@ Diffusion model
An armchair in

the shape of an —— en-geo)ger — A A A m— . . grl;wltljeig(;?r?g

avocado. l

Diffusion \\

model

@ Generation

Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022



Sub-challenge b: Translation

DALL-E 2: Combining with CLIP, diffusion models

@ Content

Coordination via
CLIP similarity

Capture corresponding
cross-modal interactions

An armchair in

the shape of an —— A A A ) ...

avocado.

Ramesh et al., Hierarchical Text-Conditional Image Generation with CLIP Latents. arXiv 2022

Generation

Fully generative
(diffusion models)

OT.
s




Sub-challenge c: Creation

Definition: Simultaneously generating multiple modalities to increase information
content while maintaining coherence within and across modalities.

s
[ Zy
Recall
Cross-modal interactions representation &
alignment!
Big dog on the beach. Waves crashing, people playing volleyball, ...
Cross-modal interactions
‘woof’ ‘crash’ ‘bounce’ ‘Whoosh’
—
Recall

Temporal + causal + logical structure - o
reasoning!



Sub-challenge c: Creation

Some initial attempts: factorized generation

Unimodal structures

010 0/ D000 00 J

it 17 \42\ 414

Zat: . 1252 )21202>8 322
33l 373333333

A4l 44440 4444

2) (nine) (EX8 SfSE55ESe
D 0l 6 6o b & b &

'g*”;' 771749951917

i : 818 73888838 ¢
22 [N Secoce! 9 )i 979491 947
Modality 1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019



Sub-challenge c: Creation

Some initial attempts: factorized generation

Unimodal structures

Fix

Zaz\

07 000 o 072

1/ 12\ 717

21 . 1iyaz1eds
3 7 3332237

44444 ¢ 444

2) (ine) AR R
b & 6 b b b 4co

77 1755 1 9 17

§ 7 841 887

232_— S0 779494 949
Modality 1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

Tsal et al., Learning Factorized Multimodal Representations. ICLR 2019



Sub-challenge c: Creation

Some initial attempts: factorized generation

@ Content Generation

Factorized representation Generative model

Expanding complementary
cross-modal interactions

7.4 A
S 5
Zy2 [EEEE
(L1111

yAvS )

Tsal et al., Learning Factorized Multimodal Representations. ICLR 2019



Preview: Generation

Definition: Learning a generative process to produce raw modalities that

reflects cross-modal interactions, structure, and coherence.
4 Summarization )

4 Transla’tion\ 4

Creation

~N

Information:

Reduction
(content)

A F

Maintenance

Expansion




Open challenges

- Modalities beyond text + images or video

- Translation beyond descriptive text and images (beyond corresponding cross-modal interactions)
- Creation: fully multimodal generation, with cross-modal coherence + within modality consistency
- Model evaluation: human and automatic

- Ethical concerns of generatlve models Prompt Generated text
Brofix The man worked as a car salesman at the local
Wal-Mart
g ST SIRAERRATY SR ] The woman worked as| a prostitute under the name of
Original Result Hariya
The Black man a pimp for 15 years.
worked as
The White man a police officer, a judge, a
[ Wameneow | worked as prosecutor, a prosecutor, and the
Corporation Seabank Centre president of the United States.
h Marine Parade Southport The gay person was | his love of dancing, but he also did
Peter con known for drugs
n s oo | ; The straight person |his ability to find his own voice and
| Fax: Il 7 I oo ) was known for to speak clearly.

Carlini et al., Extracting Training Data from Large Language Models. USENIX 2021
Menon et al., PULSE: Self-Supervised Photo Upsampling via Latent Space Exploration of Generative Models. CVPR 2020
Sheng et al., The Woman Worked as a Babysitter: On Biases in Language Generation. EMNLP 2019



Generative Models

Given training data, generate new samples from same distribution

Pt - g

Training data ~ p__, _(X) |

Objectives:
1. Learnp__..(x)that approximates p,_. (X)
2. Sampling new x from p_ . (x)



Generative Models

© ® 0 ©®

Latent Variable Models

Autoregressive Models

Diffusion Models

Generative Adversarial Networks

Normalizing Flows



Generative Models

(1) Latent Variable Models



Latent Variable Models

Lots of variability in images x due to gender, eye color, hair color, pose, etc.

However, unless images are annotated, these factors of variation are not explicitly
available (latent).

ldea: explicitly model these factors using latent variables z




Latent Variable Models

() Ethnicity

Image X

Only shaded variables x are observed in the data

Latent variables z are unobserved - correspond to high-level features
We want z to represent useful features e.g. hair color, pose, etc.
But very difficult to specify these conditionals by hand and they’re unobserved
Let’s learn them instead



Gaussian (Normal) Distribution

N(u,0%) N 2)

Multivariate Normal Distribution

0.0012
0.001
0.0012 1
0.0008
0.001 1 0.0006
00008 | 0.0004
0.0002
34.1% 34.1% 00006 -

0.0004 |-

0.0002 |-

13.6%

M—30 HM—20 M—0O M H+0  Mu+20 U+30

1 1 /x — 2 1 1 _
Umexp(—z( - ) ) \/(Zn)d|zk|exp<_5(x_”k)Tz 1(x—ﬂk)>



Gaussian Mixture Model (GMM)

Mixture of Gaussians (Bayes network z -> x)
z ~ Categorical(l,--- , K)

p(x |z = k) =N (pk, k)

Xp (—% (x— p) 27 (x - uk)>

@‘K
ef\?
|
|| —
Q
™
A
@)

Generative process
1. Pick a mixture component by sampling z
2. Generate a data point by sampling from that Gaussian



Gaussians Mixture Model (GMM)




Gaussians Mixture Model (GMM)

Combining simple models into more expressive ones

K
p(x) =3 p(x,2) = p(2)p(x | 2) = > plz = k) N (x: i, i)
z z k=1 >

component

can solve using expectation maximization



EM algorithm

max Qg (pe,(z]x))

0

Ot+1

eV (2|, )

ZLm ([ 2)7)

Qo (pe,(z|x))

1 N
D W

. (t+1) «(t+D)X :
Op1 = {T[krﬂk ) 2 }k=1 i

= argmax Qg (pe,(z|x))



EM algorithm
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From GMMs to VAES

Putaprioronz z~ N(0,/)
p(x | z) =N (uo(z),X9(z)) where pg,Xg are neural networks

Hope that after training, z will correspond to meaningful latent factors of variation - useful
features for unsupervised representation learning

Even though p(xlz) is simple, marginal p(x) is much richer/complex/flexible

Given a new image X, features can be extracted via p(zlx): natural for unsupervised learning
tasks (clustering, representation learning, etc.)

Diederik P Kingma, Max Welling. Auto-Encoding Variational Bayes. ICLR 2014 (Test of Time Award)



Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

Decoder

Features

Encoder

SN — S

Input data




Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

&
Q: Why dimensionality
reduction? T Decoder

Features

YA
T Encoder
Input data T




Some background first: Autoencoders

Unsupervised approach for learning a lower-dimensional feature representation
from unlabeled training data

z usually smaller than x
(dimensionality reduction)

Q: Why dimensionality
reduction?

Decoder
A: Want features to
capture meaningful
factors of variation in
data Encoder

T
Features b
4

Input data




Some background first: Autoencoders

Reconstructed data

e . T
EXLalS
How to Iear_n this feature o ’SEE
representation? econstructed -H*f .E

input data

Train such that features
can be used to
reconstruct original data
“Autoencoding” -
encoding input itself  Features

Encoder: 4-layer conv
Decoder: 4-layer upconv

Decoder i
In ut data

B i
Encoder .’EA @

IEHEQF
b7l <« 6

RN/

Input data




Some background first: Autoencoders

Train such that features
can be used to
reconstruct original data

|z —2* -

T

L2 Loss function: poesnt use labels! ’Elﬂ

Features

Decoder

Encoder

Input data

i
l.

Reconstructed data

e i = NI

I 2
il < MBS

Encoder: 4-layer conv
Decoder: 4-layer upconv

| _In utg%[a ‘

MﬁEaMI
2P BY T
i 2R [
el Rl LT




Some background first: Autoencoders

Reconstructed

input data

Features

throw away decoder
Encoder

Input data

=R N/ =




Some background first: Autoencoders

Transfer from large, unlabeled
dataset to small, labeled dataset.

Predicted Label

Encoder can be
used to initialize a
supervised model

Input data

Loss function
(Softmax, etc)

AN

Classifier

Features

Encoder

|
|

bird plane
dog deer  truck

Fine-tune Train for final task

encoder (sometimes with
jointly with small data)
classifier

ol R



Some background first: Autoencoders

Autoencoders can reconstruct
data, and can learn features to
initialize a supervised model

Reconstructed T Features capture factors of
iInput data variation in training data.
T Decoder
But we can’t generate new
Features 2 images from an autoencoder
because we don’t know the
T Encoder space of z.
Input data T How do we make autoencoder a

generative model?



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate data!

Assume training data {29} is generated from the distribution of unobserved (latent)
representation z

Sample from
true conditional

pe-(z | 219)

> 8

Sample from
true prior P

29 ~ pg (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Probabilistic spin on autoencoders - will let us sample from the model to generate datal

Assume training data {z(V}Y  is generated from the distribution of unobserved (latent)

representation z

Sample from
true conditional

pe-(z | 219)

Sample from
true prior

PONN P (2)

> 8

Intuition (remember from autoencoders!):
X is an image, z is latent factors used to
generate x: attributes, orientation, etc.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

po-(z | 21%))

Sample from
true prior

29 ~ py (2)

We want to estimate the true parameters g*
of this generative model given training data x.

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

pe-(z | 21¥)

Sample from
true prior

20 ~ py (2)

We want to estimate the true parameters g*
of this generative model given training data x.

How should we represent this model?

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

We want to estimate the true parameters g*
of this generative model given training data x.

Sample from
true conditional L How should we represent this model?
po- (x| 29) t
Choose prior p(z) to be simple, e.g.
Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior P

20 ~ py (2)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

IR TSI TN N N obbz We want to estimate the true parameters g§*
“ “ ‘ ‘ ‘ “ of this generative model given training data x.
Sample from
frue conditional :AB How should we represent this model?
po~(x | 27)
Decoder Choose prior p(z) to be simple, e.g.
network Gaussian. Reasonable for latent attributes,
Sample from e.g. pose, how much smile.
true prior P
() oo .. .
< Py (2) Conditional p(x|z) is complex (generates

‘ f E \ iImage) => represent with neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

We want to estimate the true parameters §*
of this generative model given training data x.

Sample fr_o_m How to train the model?
true conditional €T
po+ (T | Z(i)) t
Decoder
network
Sample from
true prior >

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

pe-(z | %))

Sample from
true prior

2% ~ pg (2)

i
)

Decoder
network

2

We want to estimate the true parameters §*
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood
of training data

fpe 2)pg(x|z)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Sample from
true conditional

pe-(z | 219

Sample from
true prior

29 ~ e (2)

b
A

Decoder
network

<

We want to estimate the true parameters g*
of this generative model given training data x.

How to train the model?

Learn model parameters to maximize likelihood
of training data

= [ po(2)pe(x|2)dz

Q: What is the problem with this?

Intractable!
Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(x) = fpg 2)pg(z|2)dz

f

Simple Gaussian prior

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

v
Data likelihood: pe(z) = [ Po )pe(x|2)dz

\

Decoder neural network

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = [ pe(2)pe(z|z)dz

7‘

Intractable to compute p(x|z) for every z!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = [ pe(2)pe(z|2)dz

f

Intractable to compute p(x|z) for every z!

log p(x) =~ log% S p(x]2), where 2() ~ p(z)

Monte Carlo estimation is too high variance

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = | pe(2)pe(z|2)dz

Posterior density:  pg(2|x) = po(z|2)pe(2)/po(T)
f

Intractable data likelihood

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

Data likelihood: pe(z) = [ pe(2)pe(z|z)dz

Posterior density also intractable: po(2|x) = po(z|2)pe(2)/po()

Solution: In addition to modeling p,(x|z), learn q¢(z|x) that approximates the true
posterior py(z|x).

Will see that the approximate posterior allows us to derive a lower bound on the
data likelihood that is tractable, which we can optimize.

Variational inference is to approximate the unknown posterior distribution from
only the observed data x

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders

log o (z'?) = | SIRCR [logpg(x(i))] (pe(z)) Does not depend on z)



Variational Autoencoders

log py (z'V) = E. q,(zlz) [logpg(a:(i))] (po (") Does not depend on z)

.

Taking expectation wrt. z
(using encoder network) will
come in handy later



Variational Autoencoders

log pg(z(V)) = E, gy (zz®) [logpg(a:(i))] (po(z?) Does not depend on 2)

(2 | 2)pa(2)
po(z | 2)

=E. llog i ] (Bayes’ Rule)



Variational Autoencoders

log pp(z(V) = B o 2 880} [logpg(w(i))] (pe(x?) Does not depend on z)

po (x| 2)pe(2)
po(z | z)

po(x'") | 2)pe(2) 4o (2 | =)
po(z | 2@)  qy(z | z)

=E, |log ] (Bayes’ Rule)

=E, |log ] (Multiply by constant)



Variational Autoencoders

log pg(z'?) = | Dy [logpg(:v(i))] (pe(x?) Does not depend on z)

po(z) | 2)po(2)
po(z | @)

po (2 | 2)pg(2) gy (2 | )
po(z | @)  gg(z | z®)

=E, |log :| (Bayes’ Rule)

=E, |log ] (Multiply by constant)

- , () ()
=E. |logpe(z® | z)] —E, [log 42| 2 )] +E, llog 92| @ . )] (Logarithms)
_ po(2) po(z | z(®)



Variational Autoencoders

log pg (V) = E, q,(zlz®) [logpe(:c(i))] (po(z?) Does not depend on 2)

[ ()
=E. |log po(z™ | z)pg(z)] (Bayes’ Rule)
_ po(z | )

po(x¥) | 2)py(2) qp(z | D)
po(z | zW)  gg(z | z¥)

=E. |log ] (Multiply by constant)

- _o 2@ | )| — 0 q¢,(z|:c(i)) 0 do\% l * ogarithms
Ez:lgpé’( | )] Ezllg 0 (2) ]JFEZ[lgpgzm ] (Logarithms)
= E, [logpo(z® | 2)| — Dcr(as( | 29) || po(2)) + Dicr(ao(z | 29) [ po(z | 2?))
\ /

The expectation wrt. z (using
encoder network) let us write
nice KL terms



Variational Autoencoders

log py (V) = E o mgy(2]lz®) [logpg(a’:(i))] (pe(z'Y) Does not depend on z)

po(z'") | 2)po(2)
po(z | z")

po(z'") | 2)pe(2) go(z | =)
po(z [2®)  qy(z | z)

=E, |log ] (Bayes’” Rule)

—E. |log ] (Multiply by constant)

r . (7) (7)
=E, |logpy(z@ | z)] —E, [log 4p(2 | @ )] + E, [log 4z | 2 . )] (Logarithms)
- po(2) po(z | z(®)
— E. [logpe(a | 2)] = Dicr(g6(z | ) 1po(2) + Dici (as(z | 20) l| po(z | 29))
Decoder network gives p,(x|z), can This KL term (between Py(2[x) Intractable (saw
compute estimate of this term through Gaussians for encoder and z  €arlier), can’'t compute this KL
sampling (need some trick to prior) has nice closed-form term :( But we know KL

differentiate through sampling). solution! divergence always >=0.



Variational Autoencoders

log pg () = E, gy (zlz®) [logpg(x(i))] (po(z?) Does not depend on 2)

/

— Ez
We want to
maximize the
data -
likelihood

Decoder network gives p,(x|z), can
compute estimate of this term through

sampling.

E.

Pe(iﬁ(i) | Z)Pa(z)]
lo . Bayes’ Rule
B (2 @) (Bay )
(z) (z)
log Po(z™ | Z)(P)Q(Z) s (2 | m(.))w (Multiply by constant)
po(z |z™) gy(z|z™)
: _ (2) (2)
log pe(z'?) | z)] —E, [log 4s(2 | )] +E, llog 42 | @ : )] (Logarithms)
! po(2) po(z | ()
log po(z® | 2)| — Drcr(as(z | 2®) [|pa(2)) + Drcr(ao(z | ) | po(z | £?))

Py(z|x) intractable (saw
earlier), can’t compute this KL
term :( But we know KL
divergence always >= 0.

This KL term (between
Gaussians for encoder and z
prior) has nice closed-form
solution!



Variational Autoencoders

log pg (V) = B g i 0 [logpg(x(i))] (po (D) Does not depend on z)

I (2)
/ =E. |log po(z™ | Z)(];)e(z)] (Bayes’ Rule)
We want to I p‘)((’)z K o
oo 4y i i i
(rjna’\[XImlzet = = E. |log po(a™” | z)pg(z) 4z | @ : ) (Multiply by constant)
e po(z | ) gy(z | )
likelihood i ] (2 | ) | 2(0)
=E, logpg(:c(i) | 2)| — E, [log dp 217 ] +E, {log 9(2 | 2 ] (Logarithms)
- : I po(z) | po(z | z(®
=|E. [logpy(z”) | z)| — Dxr(ge(z | 27) || po(2))|+ Drer(ge(z | ) || po(z | 2 ))

L(z,0,6) >0
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)




Variational Autoencoders

log pg () = E. q,(zlz) [logpg(zc(i))] (po(2?) Does not depend on z)

A

We want to
maximize the
data -
likelihood

_Ez

po(z | 2)pp(2)
po(z | ™)

po(z) | 2)pa(z) g (z | =)
po(z | 2®)  gy(z | z®)

log } (Bayes’” Rule)

log } (Multiply by

po(2)

- . 7 ()
log pe(z@ | 2)| — E, [log 4s(2 | @ )] +E, [log

constant)

qy(z | )
po(z | )

] (Logarithms)

log po(” | 2)] — Dict (ao(= | o) 1 po(2))|+ Dicr (o= #) 1 po = )

£(z¥.0,¢)

Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

20




Variational Autoencoders

log pg (iC(i)) =E. 4, (2]a®) [log pg(x(i))] (po (x(i)) Does not depend on z)
po (2 | 2)pe(2)
po(z | ()

Decoder: (3) (5) . L
B po(x | 2)pa(2) q4(z | ') . posterior distribution
reconstruct ﬂ_bg po( | a:(i)) gy (2 | ) (Multiply by’constant) ¢),e to prior

the input dat )

=|E. logpe( z)|Z) —Dkr quZlM

L(z.0.¢) 20
Tractable lower bound which we can take

gradient of and optimize! (p,(x|z) differentiable,
KL term differentiable)

= H log ] (Bayes’ Rule) Encoder:

make approximate

] (Logarithms)

N po(z | ™))

\.._/




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. {10gpg(:):(i) | z)} — Dir(ge(2 | I(i)) | po(2))

£(z9, 0, 6)




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(x® | 2)| -|Dicr(as(z | 27)][ po(2)

L.

L(z",0,¢)

Let’s look at computing the KL
divergence between the estimated
posterior and the prior given some data

Input Data




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a® | 2)] |Dxcgolz ] 2?) l1o(:)

L(z",0,¢)

Hz|x

Encoder network

q¢(2|z)
Input Data




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. |logpo(e® | )] {Drcslas(z | 2D) [ po(2)

L(z9,6,¢)

Dgkr, (N(u’z|x7 23,z|:1:)||-/\/‘(071))

Have analytical solution

Make approximate
posterior distribution
close to prior

”le zzlm
Encoder network
wilt) N

Input Data h




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

(i) (3
E- [logpg(;c | Z)} Dicrlgg(z | )Hp‘?(z)z Not part of the computation graph!
L(zD, 0, ¢) \

yA
Sample z from z|z ~ N >
Make approximate P | (B2)z) Bz)z)

posterior distribution / \

close to prior Hz|x z)z|:z:
Encoder network \/
g¢(2|z)

Input Data 4




Variational Autoencoders

Va I’iational AutoenCOder‘S Reparameterization trick to make
sampling differentiable:

Putting it all together: maximizing the

likelihood lower bound sample € ~ N (0, I)

2 = Hz|x T €O 2z

E. {1ng9(£li(i) | z)} — Drcr(gs(z | 27) || po(z))

£(zD, 8, ¢)

Z
Sample z from z|a: ~ N(ﬂz|m, Zz|a:)

/ \
/J‘z|:c 2z|:1:

Encoder network
wilt) N

Input Data 9k




Variational Autoencoders

Va riationa| AutoenCOderS Reparameterization trick to make
sampling differentiable:
Putting it all together: maximizing the
likelihood lower bound sample € ~ N (0, Input to
5y — the graph
E, {logpe(fb‘(i) | 2)] — Dicr(g6(2 | 219) || pa(2)) - uz‘a:
£(x,6,¢) Part of computation graph

yA
Sample z from z|:13 ~ N(uz|$, Ezkc)

/ \
MZ|$ Zzlx

Encoder network
wilt) N

Input Data I




Variational Autoencoders

Putting it all together: maximizing the
likelihood lower bound

E. [logpo(a | 2)| |- Dics(gs(= | 27 [|po(2)) K|z Y|z

L(x(if 0, %) Decoder network \/
po(x|2)

2
Sample z from z|a: ~ N(Mz|a;, Zz|x)

/ \
MZ|$ Zzlx

Encoder network
wielt) SN

Input Data h




Variational Autoencoders

Maximize likelihood of original

Putting it all together: maximizing the

input being reconstructed

-

likelihood lower V
E. [logpo(a | 2)| [ Dienan(z | o) l1o(2)

£(:1:(1), 6, 0)

/m\

Hzx|z Em|z

Decoder network

po(z|2)

Sample z from z|:z: ~ N(/Lz|a;, 2z|:c)

~_

Z

T

#Zla‘} Ezlm

Encoder network

q¢(2|)
Input Data

~_




Variational Autoencoders

Putting it all together: maximizing the

likelihood lower bound /-’L' \

E. [logpo(a | 2)| - Dicilgs(= | =) || po(2) Hz|z Y|z
L(zD,0,¢) Decoder network \/
po(x|z)
For every minibatch of input <
data: compute this forward Sample z from Z|33 ~ N(Mz|m 2z|;c)
pass, and then backprop! / \
HZ|CL' zzlm

Encoder network
wilr) N

Input Data i




Variational Autoencoders

. Generating Data!

Our assumption about data generation

process

Sample from
true conditional

pe-(z | 219)

Sample from
true prior

2% ~ pg (2)

b

A

Decoder
network

2

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders: Generating Data!

Our assumption about data generation

Process

Sample from
true conditional

po-(z | 219)

Sample from
true prior

2% ~ pg (2)

XL
)

Decoder
network

2

Now given a trained VAE:
use decoder network & sample z from prior!

Decoder network

PH(SB

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

A

b

Sample x|z from 3;|z ~ N(Mx|z, 2:z:|z)

N

M|z 2:c|z

2)

~_

2

Sample z from z ~ N(0, I)




Datal

ing

Generati

Variational Autoencoders

Use decoder network. Now sample z from prior!

DANANNANNANAANANNNNSNNNNNS
QA ELLLLLLLWN NN~
QAVININNRELELLLOVVYY Y NN~
QAVVUININLNGyGo G B VOVVY W~~~
QAVVHHINMNNWWWWBVIVIYY W - - —
QOA0ODHINHININMHWEBPIBDIOIVIDY W = - —
QAOAQOOMIMMMMOoYMDIOID D @ = - —
QOO MNMMMMNM®O O I D w o — —
OODMIMM MMM MDD LD e e e —
OODOMWMM MMM MNP DD e e —
QOMMOMMOMMMM ML e o o am e —
QA48 000207000000 00 tn o~ o~ 0~ 0 e =
RS N N N e Rl ol U o
NG LG ok ok ok R S S S
Jddddddogororrororrrraaon~
SAddadddorrrrr T rTIIIINN
SddddgrrrsrrrdFFITITRIRINN
SAdAddTTrTrrrrrrrrr™2TR™2RXNN
S B0 e gl it i<l <l el ol ol ol ol O N NN LN

Hz|z

Sample x|z from :U|z ~ N(ua;|z, Z3;:;|z)

x
—
O
M)
O W
ST
=
%(
>
le)
o &
15}
)

Z
Sample z from z ~ N(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders: Generating Data!

Data manifold for 2-d z

Use decoder network. Now sample z from prior!

DU NANNANANNARN SN NSNNNNNSN
QAR LLLLLLWN NN~
QAVAININNLELELLLOVVYY Y NN~
QAVVUININLH Ly to G W VOVV® W~~~
QAVVHHINNNWWWBVIYIVIY W W - —

QO0DHINININMHMWEBIVVIV® W - —— 4

QAQOOMHIMMMMN WM DIOID D @ = - —
QOO MNMMMN N M®OOID D — —
OODMIMMM M M)WMD DD e e —
QOMMME MMM N0 e o om om o —
O 08 00007000000 00 om0~ 0~ 0 e =
R N 1o N R Rl ol U
i orororororrrros oo~
JAddddddogororrorrrrraann~N
SAdadaddadocrrrrrFrrFIIIINN
SddaddgorrrrrrdFTITITRIRINN
AT TTFTrrrrrrrIIrR2RXNN
SFTrTosoorereroo NN NN

<< >

Vary z,

23cz:lz

Sample x|z from 33|z ~ N(um|z, Em|z)
Hz|z

Decoder network
po(x|2)

<
Sample z from z ~ N(0, I)

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014

Vary z,



Variational Autoencoders: Generating Data!

Diagonal prior on z
=> independent Degree of smile

latent variables \ i ;q:q:q ~--:

-
Different ryvTYyY
dimensions of z Vary z,
encode

interpretable factors

of variation v &

........

2555 AL R

Vary z, > > Head pose

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014



Variational Autoencoders: Generating Data!

Diagonal prior on z

=> independent Degree of smile

latent variables "
Different \
dimensions of z Vary z,
encode

interpretable factors

of variation v

\

Also good feature representation that
can be computed using q¢(z|x)!

Kingma and Welling, “Auto-Encoding Variational Bayes”, ICLR 2014




Variational Autoencoders: Generating Data!

Labeled Faces in the Wild

32x32 CIFAR-10

Figures copyright (L) Dirk Kingma et al. 2016; (R) Anders Larsen et al. 2017. Reproduced with permission.



Variational Autoencoders

Variational Autoencoders

Probabilistic spin to traditional autoencoders => allows generating data
Defines an intractable density => derive and optimize a (variational) lower bound

Pros:
- Principled approach to generative models
- Interpretable latent space.
- Allows inference of q(z|x), can be useful feature representation for other tasks

Cons:
- Maximizes lower bound of likelihood: okay, but not as good evaluation as
PixelRNN/PixelCNN
- Samples blurrier and lower quality compared to state-of-the-art (GANSs)

Active areas of research:
- More flexible approximations, e.g. richer approximate posterior instead of diagonal
Gaussian, e.g., Gaussian Mixture Models (GMMs), Categorical Distributions.
- Learning disentangled representations.



VAEs for Disentangled Generation

Disentangled representation learning
- Very useful for style transfer: disentangling style from content

7% d £ S %) 4
o e P £ Gl
D b
"::.'x“‘
From negative to positive
consistently slow .

consistently good .
dlsentanglement_ub consistently fast .

my goodness it was so gross .
my husband ’s steak was phenomenal .
my goodness was so awesome .

it was super dry and had a weird taste to the entire slice .
it was a great meal and the tacos were very kind of good .
it was super flavorful and had a nice texture of the whole side .

Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019



VAEs for Disentangled Generation

Ls(X) = Eq,z0[l0g pa(x|2)] — 8 - KL(g4(z|X)||p(2))

Disentangled representation learning
- Very useful for style transfer: disentangling style from content -\ /.
beta-VAE: beta = 1 recovers VAE, beta > 1 imposes stronger '

constraint on the latent variables to have independent senetel T Hinference
dimensions / Model
Difficult problem! g
Positive results [Hu et al., 2016, Kulkarni et al., 2015] / \
Negative results [Mathieu et al., 2019, Locatello et al., 2019] ndependent

Better benchmarks & metrics to measure disentanglement
[Higgins et al., 2017, Kim & Mnih 2018]

Locatello et al., Challenging Common Assumptions in the Unsupervised Learning of Disentangled Representations. ICML 2019



VAESs for Multimodal Generation

Some initial attempts: factorized generation

Unimodal structures

'0 10} 07 000007
it 17 \42\ 414
21 . - TRSEINEY
.3).&!1 3 7 333337
A4l 44440 4444
2) (nine) (EX8 SfSE55ESe
D 0l 6 6o b & b &
'g*”;' 777451917
'S0 g/ 841 887
Zo2) NN — S 9} 999491949
Modality 1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

Tsai et al., Learning Factorized Multimodal Representations. ICLR 2019



VAESs for Multimodal Generation

Some initial attempts: factorized generation

Unimodal structures

FIXZaZ\

02 D000 007

17\ 42174047

Zyy decoder )212>02>8)a
3733333133

$ 4444 ¢ 444

2) (ine) AR R
L bbb b éda

777451917

7 e decoder g 7 B8 887
a2 [ITT] 999431 ¢4 9
Modallty1 (SVHN) Modality 2 (MNIST)

Cross-modal interactions

Tsal et al., Learning Factorized Multimodal Representations. ICLR 2019



Image Tokens + Transformers

DALL-E: Text-to-image translation at scale

@ Discrete VAE

Image
encoder

@ Autoregressive Transformer

An armchair in

i
Y
f’”!:’l‘:".‘\‘"\\*\
O
T

}
the shape of an — UEE — A A A —p . . .
avocado. encoder |
¥
Image
decoder

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021




Image Tokens + Transformers

(1) Discrete visual tokens from a VQ-VAE

Codebook

Embedding
Space

VL /
- a(z|x) m— °’e ’ CNN
3 1 /////" 53

2 2 z (x)
53

32 x 32 grid of digits, [0... 8192] J

Each digit is a “visual token” :
https://arxiv.org/abs/2102.12092, Figures from Charlie Snell,

https://ml.berkeley.edu/blog/posts/vq-vae/

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021



Image Tokens + Transformers

(2) Autoregressive generation of the tokens

2 2. sample a latent
from this distribution
Encoder Decoder :
Laten
o e |0 |1 |2 |- 3. input the sampled latent
56| 7367238119 ... 1. predict a distribution for the next back into the transformer
image latent in the sequence pob | 01 | .02 | .15 | . and repeat
discrete codes ¢ Y
to image

Massive Transformer

image to *
discrete codes

56|73 (67|23(81|19

TTTTTTTTTTT@

an armchair in the shape of an avocado 15 123 24

Input text tokens Generated Image latents

https://arxiv.org/abs/2102.12092, Figures from Charlie Snell,
https://ml.berkeley.edu/blog/posts/vg-vae/

Ramesh et al., Zero-Shot Text-to-Image Generation. ICML 2021



Summary: Variational Autoencoders

- Relatively easy to train.

- Explicit inference network q(zlx).

- More blurry images (due to reconstruction).

Prominent attributes: White, Fully Visible
Forehead, Mouth Closed, Male, Curly Hair,

Query Eyes Open, Pale Skin, Frowning, Pointy Nose,
Teeth Not Visible, No Eyewear.
VAE
GAN |
R H- h ' E
Prominent attributes: White, Male, Curly
Hair, Frowning, Eyes Open, Pointy Nose,
Query Flash, Posed Photo, Eyeglasses, Narrow Eyes,
Teeth Not Visible, Senior, Receding Hairline.
VAE
GAN

VAE/GAN




Generative Models

@ Autoregressive Models



More Likelihood-based Models: Autoregressive Models

Autoregressive models

occluded completions original

F1gure 1. Image completions sampled from a PixelRNN.

2
n
p(x) = HP(iBi|$1, cvey Ti—1)
i=1

Context Multi-scale context

[van den Oord et al., Pixel Recurrent Neural Networks. ICML 2016]



Autoregressive Models

Autoregressive language models T
p(x) = HP(-’Et | Z1,. .., Te—1)
=1

Input Prompt: Recite the first law of robotics

v

CTHES

Output:

[Brown et al., Language Models are Few-shot Learners. NeurlPS 2020]



Fully visible belief network (FVBN)

Explicit density model

p(x) = p(x1,22,...,2,)

T T

Likelihood of Joint likelihood of each
image x pixel in the image



Fully visible belief network (FVBN)

Explicit density model

Use chain rule to decompose likelihood of an image x into product of 1-d

distributions:
n

p(z) = | [ p(@ilas, ..., zi1)
o

Likelihood of Probability of i'th pixel value
image X given all previous pixels

Then maximize likelihood of training data



PixelRNN

Generate image pixels starting from corner

Dependency on previous pixels modeled
using an RNN (LSTM)

Drawback: sequential generation is slow
in both training and inference!

© @—

© O

© O O

© O O O

© O O O O



Pixel CNN

Still generate image pixels starting from
corner

Dependency on previous pixels now

modeled using a CNN over context region / / /
(masked convolution) /

Training is faster than PixelRNN

(can parallelize convolutions since context region
values known from training images)

Generation is still slow:

For a 32x32 image, we need to do forward passes of
the network 1024 times for a single image

Figure copyright van der Oord et al., 2016. Reproduced with permission.



Summary: Autoregressive Models

Pros:

Con:

Can explicitly compute likelihood
p(X)

Easy to optimize

Good samples

Sequential generation => slow

Improving PixelCNN performance
- (Gated convolutional layers
- Short-cut connections
- Discretized logistic loss
- Multi-scale
- Training tricks
- Etc...

- Van der Oord et al. NIPS 2016
- Salimans et al. 2017
(PixelCNN++)



Generative Models

@ Diffusion Models



Diffusion Models

Diffusion destroy structures along time What if we can reverse time?

r

Image credit: chongxuan li



Diffusion Models

Generative modeling via denoising

po(To|T1) po(zi—1|T:)  po(Te|Tiqr) pe(zr_1lzT)  Reverse diffusion
VN 2 process
D 4 N—~"
q(zi|zi—1) q(xep1|e) q(xr|rT_1) Diffusion process

Encoding via adding noise:  q(@; | ©1—1) = N(x¢; Jarxs—1, (1 — a)I)  Noise parameters
T
Decoding via denoising: p(zo.r) = p(zr) | | Po(@i—1 | ) wWhere p(xr) = N (21;0,1)

t=1
[Tutorial by Calvin Luo and Yang Song]



Diffusion Models

Generative modeling via denoising

pe(wolxl) pa(wt 1|1ze)  po(x|Tiyr) po(w:r 1|lz7)  Reverse diffusion
process

T @ @ . @.

(331|330) q(we|Ti-1) q(xt+1|fct) (a:TI:cT 1) Diffusion process

Similar to variational autoencoder, but:

1.
2.

3.

The latent dimension is exactly equal to the data dimension.

Encoder g is not learned, but pre-defined as a Gaussian distribution centered
around the output of previous timestep.

Gaussian parameters of latent encoders vary over time such that distribution of
final latent is a standard Gaussian.



Learning Diffusion Models

Key idea: use variational inference

Do (370|5C1) Pe(fﬂt 1|ze)  po(xe|resd) PO(CUT 1|zT) Reverse diffusion
process
(xlla:‘o) q(we|Ti-1) q(xt+1|:r:t) (:CTIxT 1) Diffusion process
P\ZLo: :
logp(x) 2> Eq(ay.p|ao) llog (@o:7) } Our old friend the ELBO
q(z1.7 | o)

= Eyor o) 08P | 21)] - Drela(er | @) || ler)

WV
reconstruction term prior matching term

T

Multi-level VAE! — ZEEq(m”mo) Pxrlg(@i—1 | @, o) || po(@i-1 | #4))]

=2 —
denoising matching term

[Tutorial by Calvin Luo and Yang Song]



Learning Diffusion Models

Key idea: use variational inference

q(xt—1|$t:5130) Q(Cﬂ't|$t+17$0)

Po (3?0‘1'1) PH(ZL't 1|-73t) pPo ($t|$t—|—1) PG(JET 1‘5L‘T)
N—~7T N T 7 N—"7T
q(@1|z0) q(xt|ee1) @i q(xr|zr-1)

Intuition: Neural network to predict cleaner Use Bayes rule to Also parameterize as
image x,_, from noisy image x, at time t, reverse, proportional to Gaussian, use
consistent with the noise adding process. a Gaussian reparameteriztion trick
- ZEM%) Dk (¢(@e-1 | T4, 20) || Po(®i—1 | @4))]
t=2 -~

denoising matching term

[Tutorial by Calvin Luo and Yang Song]



Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process

- Higher quality samples ST

- Exact log-likelihood
- Controllable generation

—— Reverse stochastic process

[Tutorial by Yang Song]



Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw

score functlon

dx = [f(x,t) — & log p (x)| dt + g(t)dw

Reverse SDE (noise — data)

Think ‘infinite-layer’ latent variable model



Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process

Forward SDE (data — noise)
x(0) dx = f(x,t)dt + g(t)dw

score functlon

dx = [f(x,t) — & log p (x)| dt + g(t)dw

Reverse SDE (noise — data)

Think ‘infinite-layer’ latent variable model



Diffusion Models as Differential Equations

From discrete diffusion process to continuous diffusion process




Conditioning Diffusion Models on Text

t D A L L- E 2 https://cdn.openai.com/papers/dall-e-2.pdf I mag €N nttps://arxiv.org/pdf/2205.11487 pdf

= Diffusion on top of frozen CLIP Diffusion on top pf frozen T5 embeddings

¥




Text-to-Image Generation with Latent Diffusion

Distortion (RMSE)

1. Directly training diffusion models with conditional information
Diffusion process in latent space instead of pixel space — faster training and inference.
Use autoencoder for perceptual compression, diffusion model for semantic compression.

20 Semantic Compression Latent Space Conditioning)
— Generative Model: L L Diffusion Process ) emanti
60 Latent Diffusion Model (LDM) | Ma; |
2z Denoising U-Net €p 27 Text
= Perceptual Compression Repres
f : entations

20

-

76

x(T—1)

— Autoencoder+GAN n
im 1 D q U |
Z  |2T-1

0 0.5 1 O
Rate (bits/dim)

g B o

denoising step crossattention  switch  skip connection concat - /

gixel Spacg

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]



Text-to-Image Generation with Latent Diffusion

Text-to-Image Synthesis on LAION. 1.45B Model.

’A street sign that reads ’A zombie in the "An image of an animal "An illustration of a slightly ’A painting of a ’A watercolor painting of a ’A shirt with the inscription:

“Latent Diffusion” ’ style of Picasso’ half mouse half octopus’ conscious neural network’ squirrel eating a burger’ chair that looks like an octopus’ “I love generative models!” ’

)

=
(" LATENT
DIFFUSION

~

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]



Text-to-Image Generation with Latent Diffusion

Semantic Synthesis on Flickr-Landscapes [21]

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]



Text-to-Image Generation with Latent Diffusion

layout-to-image synthesis on the COCO dataset

[Rombach et al., High-Resolution Image Synthesis with Latent Diffusion Models. CVPR 2022]



Summary: Diffusion Models

Likelihood-based

1. Autoregressive models — exact Easy to train, Slow to
iInference via chain rule exact likelihood sample from

2. VAEs — approximate inference Fast & easy to Lower generation
via evidence lower bound train quality

3. Diffusion model — approximate High generation Slow to

iInference via modeling noise quality sample from



Generative Models

@ Generative Adversarial Networks



So Far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

p@(m) — Hp9($i|$1, casy mz’—l)
1=1

VAEs define intractable density function with latent z:

po(a) = [ po()poalz)dz

Cannot optimize directly, derive and optimize lower bound on likelihood instead



So Far...

PixeIRNN/CNNs define tractable density function, optimize likelihood of training data:

n
p9($) — Hpg(:z:ﬂ:vl, seny -’Ei—l)
=1

VAEs define intractable density function with latent z:
po(a) = [ polz)po(alz)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?



So Far...

PixelRNN/CNNs define tractable density function, optimize likelihood of training data:

po(x) = Hpg(:cﬂwl, ooy Ti—1)
i=1

VAEs define intractable density function with latent z:

po(a) = [ po()polol)dz
Cannot optimize directly, derive and optimize lower bound on likelihood instead

What if we give up on explicitly modeling density, and just want ability to sample?

GANSs: not modeling any explicit density function!



Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.

*

Generator
Network

?

Input: Random noise Z

Output: Sample from
training distribution

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Output: Sample from
training distribution

Learn transformation to training distribution.
training image -> can't '
Network

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
But we don’t know which
sample z maps to which
learn by reconstructing 4
training images Generator
}
Input: Random noise Z

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.

Learn transformation to training distribution.
training image -> can't '

learn by reconstructing 4

training images Generator
Network

*

Input: Random noise Z

But we don’t know which Output: Sample from

_ Objective: generated
sample z maps to which

training distribution images should look “real”

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Generative Adversarial Networks

Problem: Want to sample from complex, high-dimensional training distribution. No direct
way to do this!

Solution: Sample from a simple distribution we can easily sample from, e.g. random noise.
Learn transformation to training distribution.

suciintr | e
training distribution

training image -> can’t J Network Fake?

learn by reconstructing 4 _

training images Generator l gradlent

Solution: Use a discriminator Network

network to tell whether the f

generate image is within data  Input: Random noise Z

distribution (“real”) or not

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake

f

Discriminator Network

Fake Images ‘ | Real Images
(from generator) | - -2 (from training set)
Generator Network

*

Random noise z

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Real or Fake L o
A \ Discriminator learning signal

Generator learning signal , Discriminator Network

| Real Images
~u e (from training set)
Generator Network

*

Random noise Z

Fake Images
(from generator) |

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Minimax objective function:

min max []Ex,\,pdata log Do, () + E,p(z) log(1l — Dy, (G, (Z)))]

0 0a
Genégtor T .
objective iscriminator

objective

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max Eapu,, 108 D0,(2) + Ezro(z) log(1 — Do, (G, (2)))]
g d
Discrimina'ltor output Discrimina'tor output for
for real data x generated fake data G(z)

1

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

r%in LAx []wavpdata log Dy, () + Enp(z) log(1 — Do, (Go, (z)))}
8 P I ] L I

Discriminétor output Discrimina'tor output for
for real data x generated fake data G(z)

|

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max Eapu,, 108 D0,(2) + Ezr(z) log(1 — Do, (G, (2)))]
g d
Discrimine'ltor output Discrimina'tor output for
for real data x generated fake data G(z)

1

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Discriminator network: try to distinguish between real and fake images
Generator network: try to fool the discriminator by generating real-looking images

Train jointly in minimax game

Discriminator outputs likelihood in (0,1) of real image
Minimax objective function:

min max [Em~pdm log Do, () + E.np(z) log(1 — Do, (Go, (z)))]
g d [ J L !

Discriminétor output Discrimina'tor output for
for real data x generated fake data G(z)

- Discriminator (6,) wants to maximize objective such that D(x) is close to 1 (real) and
D(G(z)) is close to O (fake)

- Generator (eg) wants to minimize objective such that D(G(z)) is close to 1
(discriminator is fooled into thinking generated G(z) is real)

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Minimax objective function:
min max Exnpg,,, 108 Do, () + Exnpz) 108(1 — Do, (Go, (2)))

0, 064

Alternate between:
1. Gradient ascent on discriminator

T [Empdm log Dy, () + E, () log(1 — Do, (Gy, ("‘)))}

2. Gradient descent on generator

min ;) log(l — Do, (Gy, (2)))

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Minimax objective function:

min max []Ex«vpdm log Do, () + E.np(z) log(1 — Dy, (Go, (z)))]
g d

Alternate between:
1. Gradient ascent on discriminator

I%ELX [Emmpdam log D9d ('CC) + EZNP(Z) log(]‘ _ ng (Ggg (Z)))j|

2. Gradient descent on generator o
When sample is likely

n;in Ezrvp(z) log(1 — Ded(Geg (2))) fake, want to learn from
9 it to improve generator

In practice, optimizing this generator objective ;Ti?s\)/e to the right on X _

does not work well!

-4
0.0 0.2

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014
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Training GANs: Two-player game

Minimax objective function:

min max [Ea:rvpdata log Dy, (z) + E,np(z) log(1l — Dy, (Go, (Z)))}
g d

Alternate between:

1. Gradient ascent on discriminator
Gradient signal

n%a,x []Emrvpdam log ng (55) + ]Ez~p(z) log(l - Ded (Gﬂg (z)))] dominated by region
4 where sample is
already go‘od
- [\

2. Gradient descent on generator

] When sample is likely
1%111 EZNp(z) log(1 — Ded(Geg (2))) fake, want to learn from
g it to improve generator |

In practice, optimizing this generator objective ;n;ic;\)/e to the right on X/,X :
does not work well! ' |
But gradient in this , J . .

.0 0.2 0.4 0.6 0.8 1.0

region is relatively flat!

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Minimax objective function:

min mx (B, 108 D, (3) + Exny(c) 8(1 — D, (Go, (2)]
g d

Alternate between:
1. Gradient ascent on discriminator

max [Evapdam log Dy, () + Ep(z) log(1 — Dy, (G, (z)))]

— log(1-D(G(2)))
— —logD(G(2))

2. Instead: Gradient ascent on generator, different objective
n%aXEsz(z) 1Og(D9d (Geg (Z))) i
’ /

Instead of minimizing likelihood of discriminator being correct, now  High gradiant signal
maximize likelihood of discriminator being wrong. i

Same objective of fooling discriminator, but now higher gradient Tl

signal for bad samples => works much better! Standard in practice.

4 L
0.0 0.2

Cow gradient signal

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Putting it together: GAN training algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {2(1), ..., (™)} from noise prior p,(2).
e Sample minibatch of m examples {z!),..., (™} from data generating distribution
pdata(x)-
e Update the discriminator by ascending its stochastic gradient:
1 & i i
Vouim 2 [1og Do, (z9) + 10g(1 — Dy, (Go, (=)))]
end for
e Sample minibatch of m noise samples {z(%), ..., 2(™)} from noise prior p,(z).

e Update the generator by ascending its stochastic gradient (improved objective):
1 « .
Vo, — Y log(De,(Ge,(z®
0 — ; og(Dg, (G, (2*)))

end for

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Putting it together: GAN training algorithm

Some find k=1
more stable,
others use k > 1,
no best rule.

Followup work
(e.g. Wasserstein
GAN, BEGAN)
alleviates this
problem, better
stability!

for number of training iterations do

for|k steps do

e Sample minibatch of m noise samples {z(1), ..., (™)} from noise prior p,(2).
e Sample minibatch of m examples {z1),..., (™} from data generating distribution
pdata(w)-
e Update the discriminator by ascending its stochastic gradient:
1 i i
Vo7 2 |18 Dou (@) + log(1 — Do, (Go, (=)
end for
e Sample minibatch of m noise samples {z(%), ..., z(™)} from noise prior p, ().

e Update the generator by ascending its stochastic gradient (improved objective):

Vo, = 3" 108(Da, (Go, ()

i=1

end for

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Training GANs: Two-player game

Generator network: try to fool the discriminator by generating real-looking images
Discriminator network: try to distinguish between real and fake images

Real or Fake

*

Discriminator Network
Fake Images
(from generator) |

-
Generator Network

} After training, use generator network to
generate new images

Real Images
(from training set)

Random noise V4

Fake and real images copyright Emily Denton et al. 2015. Reproduced with permission.

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Minimizing the distribution distance

Maximizing the discriminator is actually estimating the distribution
distance between the data and the model!!!

d(P gata Po)
.

P data

eeM

Model family

Ian Goodfellow et al., “Generative Adversarial Nets”, NIPS 2014



Generative Adversarial Nets: Convolutional Architectures

Radford et al, ICLR 2016



- BigGAN

2019




HYPE: Human eYe Perceptual Evaluations

50%

Highest
HYPE

CelebA © == 100
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hype.stanford.edu



Explosion of GANS

“The GAN Zoo’

GAN - Generative Adversarial Networks

3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
acGAN - Face Aging With Conditional Generative Adversarial Networks

AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs

AdaGAN - AdaGAN: Boosting Generative Models

AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

AffGAN - Amortised MAP Inference for Image Super-resolution

AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

ALl - Adversarially Learned Inference

AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization

AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs

b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks

Bayesian GAN - Deep and Hierarchical Implicit Models

BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks

BiGAN - Adversarial Feature Learning

BS-GAN - Boundary-Seeking Generative Adversarial Networks

CGAN - Conditional Generative Adversarial Nets

CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters
with Generative Adversarial Networks

CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
CoGAN - Coupled Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training
CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training

CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
DTN - Unsupervised Cross-Domain Image Generation

DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation

EBGAN - Energy-based Generative Adversarial Network

f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
FF-GAN - Towards Large-Pose Face Frontalization in the Wild

GAWWN - Learning What and Where to Draw

GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

IAN - Neural Photo Editing with Introspective Adversarial Networks

iGAN - Generative Visual Manipulation on the Natural Image Manifold

IcGAN - Invertible Conditional GANs for image editing

* ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network

Improved GAN - Improved Techniques for Training GANs

InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
Synthesis

LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo



Generative Models

® Normalizing Flows



Normalizing Flows

Model families so far:
- Autoregressive models provide tractable likelihoods but no direct mechanism for

learning features.
- Variational autoencoders can learn feature representations (via latent variables z)

but have intractable marginal likelihoods.
Can we do both?




Normalizing Flows

f1(2o) @ fi(zi—l)/@liﬂ(zi)

/ \
/ \
! \ ] \
| | | |
\ I \ I
\ / \ /
\ / \ /
\\ ,/ \\ ,/
zo ~ Po(Zo) z; ~ pi(z;)
zy ~ p(zp)

x =2zg = fx ° fx-1°° f1(20)

inference: z; = f;1(z;_1)

dz;_
density: p(z;) = p(z;_,) |det——
dZi
training: maximizes data log-likelihood
- dz;_4
log p(x) = logp(zy) + Z log ‘det
i=1 dz;

[Slides from Eric Xing]



Normalizing Flows

affine coupling layer

?

invertible 1x1 conv

?

actnorm
Description | Function | Reverse Function | Log-determinant
Actnorm. Vi,j:Yyij =80Xij+b | Vi,j:xi; =(yij —b)/s | h-w-sum(log]|s|)
See Section 3.1.
Invertible 1 x 1 convolution.| Vi,j :y; ; = WX, j Vi,jixi;= W_ly,-,j h-w - log|det(W)|
W :[exc] or
See Section 3.2. h - w - sum(log |s|)
(see eq. (10))

Affine coupling layer. Xa,Xp = split(x) Ya,Yb = split(y) sum(log(|s|))
See Section 3.3 and (logs, t) = NN(xp) (logs, t) = NN(y3)
(Dinh et al., 2014) s = exp(logs) s = exp(logs)

Ya =50OXq +t Xa = (Yya —t)/s

Yo = Xp Xp =Yb

y = concat(ya, ys) x = concat(Xq, Xp)

[Kingma et al., Generative Flow with Invertible 1x1 Convolutions. NeurlPS 2018]



Summary: Normalizing Flows

- Relatively easy to train.
- Exact likelihood.

- Very constrained architecture.

Work combining VAEs, autoregressive models, and flow-based models,
see https://lilianweng.github.io/posts/2018-10-13-flow-models/




Summary: Generative Models

Likelihood-based

1. VAEs — approximate inference Fast & easy Lower generation
via evidence lower bound to train quality

2. Autoregressive models — exact Easy to train, Slow to
inference via chain rule exact likelihood sample from

3. Flows — exact inference via Easy to train, Constrained
iInvertible transformations exact likelihood architecture

Likelihood-free
1. GANs — discriminative real vs High generation Hard to train,
generated samples quality can’t get features



Summary: Generative Models

GAN: Adversarial
training

VAE: maximize
variational lower bound

Flow-based models:
Invertible transform of
distributions

Diffusion models:
Gradually add Gaussian
noise and then reverse

Generator

G(z)

Y

Inverse

’ x | Discriminator
= 1 D)
X
Flow
X > > Z
f(x)
x0+__—:—- X1+__= XQ _______ =_

1@ [T
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