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Unimodal Representation: Visual Modality

Color image

Each pixel
is represented
in R4, d is the
number of

colors
(d=3 for RGB)

\
\ \
\ \

88

82

88

85

80

93

88

80

80

80

73

94

835

79

78

7

65

91

38

35

35

39

77

70

20

25

28

37

64

60

22

26

28

40

64

59

24

28

30

37

58

56
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64
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Input observation x;

88
88
85
38
20
22
24
21
23

82

80

79

35

25

26

28

22

22

78

Binary classification
problem

Dog ?

label y; € Y = {0,1}



Unimodal Representation: Visual Modality

Color image

Each pixel
is represented
in R4, d is the
number of

colors

(d=3 for RGB)

88
88
85
38
20
22
24
21
23

Input observation x;

82

80

79

35

88

82

88

85

80

93

25

88

80

80

80

73

a4

26

835

79

78

7

65

91

28

38

35

35

39

77

70
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28

37

&9 |64

60
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26

28

40
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59

24

28

30

37

58

56

78

21

22

27

38

67

635

§23

22

25

38

64

67

Multi-class
classification problem

Duck

Cat

Dog
Pig

Bird ?

label y; € Y = {0,1,2,3, ... }



Unimodal Representation: Visual Modality

Color image Multi-label (or multi-task)

2 [a classification problem
c |es
2 s o
e Duck”
o 2
N |2
S = Cat ?
= [z
o |28
< e Dog ?
80
‘\‘ \ \\ \‘\ :2 Pig ’?
i A N H
Each pixel \ ] w -
\ 88 82 |84 |88 |85 | &3 |80 |93 [102 26 .

is represented ‘\‘ 88 |80 |78 |80 |80 | 78 |73 |94 [100 28 Blrd ?

; d : \ |85 l7e|e0 |78 |77 |74 |65 91 ce 22

in R, dis the ‘\‘ 38 135 |40 |35 39 | 74 |77 |70 | &5 22 P ?

number of v |2025|23 |28 37 |62 |64 60 |57 84

\ 222622 |28 |40 |65 [64 |50 |3 78 uppy -
colors ‘\‘ 24 |28 |24 |30 |37 | &0 |58 | 56 | 66 @
= \|21 22|23 |27 38 |0 |67 |65 &7
(d 3 for RGB) ‘|23 22 |22 |25 |38 |59 |64 |67 |66 label vector Yi € ym = {0,1}111




Unimodal Representation: Visual Modality

Color image Multi-label (or multi-task)

T regression problem
88
s I
CE
= Age ?
2 =
24 .
A Height ?
é_ 23
£ Weight ?
- eight “
\ TN AN N :2 . ?
\ \\ N hOS
Eachpixel  \ : S [ Distance *
_ q \ 88 82 |84 |88 |85 | &3 |80 |93 [102 26
1S represente \‘ 88 80|78 (80 |80 |78 |73 |94 100 28 H ?
; d : \ |85 79|80 |78 |77 |74 |65 |91 |0 22 a -
in R%, dis the N |3s]95 |40 |35 39|74 |77 |70 65 22 ppy
number of N 20252 |28 |37 |60 [64 60|57 84
\ 222622 |28 |40 |65 [64 |50 |3 78
colors ‘\‘ 24 |28 |24 |30 |37 |60 |58 | 56 | 66 @ label vector y; € Y™ = R™
(d:3 for RGB) \|21 /22|23 |27 |38 |0 |67 |65 |67 :
N 23 222 |25 ]38 ] 50 [64 |67 ] o5




Unimodal Representation: Language Modality

Written language

Spoken language

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in
disguises who likes to see the subject
tackled in anner.

0 of 4 people found this review helpful

MARTHA(CON'T)
Look around you. Look at all the
great things you've done and the
people you've helped.

CLARK
But you've only put up the good
things they say about me.

MARTHA
Clark, honey. If I were to use the
bad things they say I could cover
the barn, the house and the
outhouse.

Word-level
classification

Part-of-speech ?

(noun, verb,...)

Sentiment ?

(positive or negative)

=
o
O
—
©
>
—
O
7p]
O
o
-
>
-1

0
0.
0
0
0
0
0.
0
0]
0
0]
0
0
0
0
0
0
0
E

Named entity ?

(names of person,...)

“one-hot” vector

|x;] = number of words in dictionary




Unimodal Representation: Language Modality

Written language

Spoken language

WRWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in
disguises who likes to see the subject
tackled in a humourous manner.

0 of 4 people found this review helpful

MARTHA(CON'T)
Look around you. Look at all the
great things you've done and the
people you've helped.

CLARK
But you've only put up the good
things they say about me.

MARTHA
Clark, honey. If I were to use the
bad things they say I could cover
the barn, the house and the
outhouse.

=
o
O
—
)
>
S
)
(7p]
O
o
-
-
Cl
[

0
0
0
0
0
0
0]
0
0
0
0
0
0
0
E

“bag-of-word” vector

Document-level
classification

Sentiment ?

(positive or negative)

|x;] = number of words in dictionary




Unimodal Representation: Language Modality

Written language

Spoken language

WWWWW Masterful!

By Antony Witheyman - January 12, 2006

Ideal for anyone with an interest in
disguises who likes to see the subject
tackled in a humourous manner.

0 of 4 people found this review helpful

=
i
——
©
>
| .
O
70}
O
o
-
-]
-

MARTHA(CON'T)
Look around you. Look at all the
great things you've done and the
people you've helped.

T u'ﬂ’

But you've only put up the good
things they say about me.

MARTHA
Clark, honey. If I were to use the
bad things they say I could cover

Eﬁihging the house and the “bag_of_word!! VeCtor
|x;| = number of words in dictionary

0
0]
0]
0
0.
0
0
0
0.
0]
0
0
0
0]
E

Utterance-level

classification

Sentiment ?

(positive or negative)




Unimodal Representation: Acoustic Modality

Digitalized acoustic signal

b

« Sampling rates: 8~96kHz

- Bit depth: 8, 16 or 24 bits

* Time window size: 20ms
» Offset: 10ms

0.9

o|o
N IS
N N

=
| o
O
——
)
-
(O]
7p]
O
o
—p—
=)
o
|

Spoken word ?

oy
o
N




Unimodal Representation: Acoustic Modality

Digitalized acoustic signal

P, -

« Sampling rates: 8~96kHz

« Bit depth: 8, 16 or 24 bits

« Time window size: 20ms
« Offset: 10ms

0.21

0.14
0.56
0.45
0.9 ;
0.98 Emotion ?
0.75
0.34
0.24
0.11
0.02
0.24
0.26 . .
0.58 Voice quality ?
0.9
0.99
0.79
0.45
0.34
0.24]

Spoken word ?

Input observation x;

Spectogram



Unimodal Representation

. Tactile Modality

The tactile sensor array (548 sensors) is assembled on a knitted
glove uniformly distributed over the hand.

Knitted glove Sensor array sleeve

£

3 8 P

A Identify objects

PN 0*., — ‘ § B —-H| —> Weigh objects
L ‘ Tactile signatures
H -
. Convolutional Neural
Isolation/readout Dataset of Network (CNN)
electronics tactile maps

Sundaram et al., Learning the signatures of the human grasp using a scalable
tactile glove. Nature 2019

Model the elastic property of the tactile sensor

Elastic Interaction of Particles for Robotic Tactile Simulation, ACMMM 2021



Unimodal Representation: Tactile Modality

Proprioception
Measure values internal to the system

(robot); e.g. motor speed, wheel load,
robot arm joint angles, battery voltage.

Time series data across six-
axis Force-Torque sensor:
T x 6 signal.

Next action

S q A
Episode 300 Episode 300 Episode 300

73% success rate 71% success rate 92% success rate
Time series data across
current position and
velocity of the end-effector:

T x 2d signal.

Lee et al., Making Sense of Vision and Touch: Self-Supervised Learning of Multimodal Representations for Contact Rich Tasks. ICR A 2019



Unimodal Representation: Tables

-

Text { Singapore Armed forces was the champion of Singapore Cup in 1997.

Singapore Cup

Year

Champions

Runners-up

1996

Geylang United

Singapore Armed Forces

1997

Singapore Armed Forces

Woodlands Wellington

1998

Tanjong Pagar United

Sembawang Rangers

Bao et al., Table to Text: Describing Table Region with Natural Language. AAAI 2018

J

Table-to-text
generation



Unimodal Representation: Graphs

[ Web Graph

[ B J » ‘..
g > L.
&
@ o o
() —. ¢
% Yo gome
” \ 4
HRO)
v’ !

Molecular Graph

Knowledge

[ Graph = @

@
. KNOWLEDGE .
GRAPH

— Social Graph —

Graphs are Everywhere

Control Flow
Graph

sum = (int)0;
goto cond;

A

cond:
if (i < n) goto loop; else goto after_loop;

Y

loop:

sum +=1i * i; after_loop:
i+= (int)l; return sum;
goto cond;

——

— Gene Graph —

Device Graph _




Unimodal Representation: Sets

r‘n-.‘ © “.\_nﬁgl \. .
»w“; nm,mﬂmﬁh

e &

. Set anomaly
detection

Set expansion

Set completion

Point cloud
classification

Point cloud

generation

Point clouds

Zaheer et al., DeepSets . NeurlPS 2017, Li et al., Point Cloud GAN. arxiv 2018
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Machine Learning

Meaningful
Compression

Structure Image

. e Customer Retention
Discovery Classification

Big data Dimensionality Feature Idenity Fraud

2 i Classification Diagnostics
Visualistaion Reduction Elicitation Detection

Advertising Popularity
Prediction

Learning Learning Weather

Forecasting
L}
M ac h I n e Population

Growth
Prediction

Recommender Unsupervised Supervised

Systems

Clustering Regression
Targetted

Marketing

Market
Forecasting

Customer

Segmentation L e a r n i n g

Estimating
life expectancy

Real-time decisions Game Al

Reinforcement
Learning

Robot Navigation Skill Acquisition

Learning Tasks



Supervised Learning

Labeled Data

i‘ Prediction Carrot

ﬁ -_— Bell

‘& O Pepper
Model Training Tomato

Labels
‘ ) &
/ -
-3 (2
Tomato F ' = = 1
Bell est Data i
Carrot s ;per DatabaseTown i




Simplest Classifier ?

Traffic light
Dog
B-géket

_Or_

Kayak ?



Simple Classifier: Nearest Neighbor

Traffic light

Dog
B_géket

Kayak ?




Simple Classifier: Nearest Neighbor

= Non-parametric approaches—key ideas:
= “Letthe data speak for themselves”
=  “Predict new cases based on similar cases”
= “Use multiple local models instead of a single global model”



Simple Classifier: Nearest Neighbor

Distance metrics

L1 (Manhattan) distance:
dq(x1, %) = z ‘x{ — xé‘
J

L2 (Eucledian) distance:

. N 2
dy(x1,%2) = Z (x{ - x])
N J
Which distance metric to use?
First hyper-parameter!




Definition of K-Nearest Neighbor

- .
l ‘.
I\x K

- +
+ +

(a) 1-nearest neighbor

l‘—-.~\ +
— Y 4 +\
’ — ) |
I 1
| X I
) 4
LN 4
— ~~-—‘+' +
+ +

(b) 2-nearest neighbor

o+
‘
I — 1
[ |
' X ,
“ ’
-+ -+

(c) 3-nearest neighbor



Linear Classifier

i

X {f

<

f(x,w,b) = sign(wx - b)

e denotes +1
denotes -1 ° R

o

How would you
classify this data?



Linear Classifier

i

X {f

<

f(x,w,b) = sign(wx - b)

e denotes +1
denotes -1

o

How would you
classify this data?



Linear Classifier

i

X {f

f(x,w,b) = sign(wx - b)

<

denotes +1
denotes -1

Any of these would
be fine..

..but which is best?




Classifier Margin

denotes +1
denotes -1

i

<

f

f(x,w,b) = sign(wx - b)

Define the of
a linear classifier as
the width that the
boundary could be
Increased by before
hitting a datapoint.



Support Vector Machine: Maximum Margin

denotes +1
denotes -1

i

X > f

f(x,w,b) = sign(wx - b)

<

The

IS the
linear classifier with
the maximum
margin.

This is the simplest

kind of SVM V/ Linear SVM
(Called an LSVM)



Support Vector Machine: Maximum Margin

e denotes +1
denotes -1

o

i

i

Support \Vectors are =2

those datapoints that
the margin pushes
up against

A 4

f

f(x,w,b) = sign(wx - b)

<

The

IS the
linear classifier with
the maximum
margin.

This is the simplest

kind of SVM V/ Linear SVM
(Called an LSVM)



Support Vector Machine: Maximum Margin

=7 | x+ 7 \ M =Margin Width = 2
636‘5 v W.W

A C
+° oS 2
®®**“4Q A “?‘e’d s
N‘X\O//
* Plus-plane = {x:w.x+b=+1}

 Minus-plane= {x:w.x+b=-1}

Classify as.. +1 if w.x+b>=1

-1 if w.x+b<=-1



Going beyond Classifiers...

Representation Learning: A Review and New
Perspectives

Yoshua Bengiof, Aaron Courville, and Pascal Vincentf
Department of computer science and operations research, U. Montreal
T also, Canadian Institute for Advanced Research (CIFAR)

4




RS

Q@ ML



Neural Networks: inspiration

Made up of artificial neurons

impulses carried
toward cell body

<

nucleus

branches
of axon

dendrites

axon
terminals

impulses carried

wo
away from cell body

*@® synapse
axon from a neuron
woTo

/ cell body

f (Zw;zi + b)
Zwimi +b :

output axon

activation
function

w1

A

Wo T2



Neural Networks: score function

» Made up of artificial neurons
* Linear function (dot product) followed by a nonlinear activation function

= Example a Multi Layer Perceptron

put layer

input layer
hidden layer 1 hidden layer 2



Basic Neural Network Building Block

Input x,,r e o 0 x?‘ X, *1

Weighted sum | inear classifier
Wx+b
Activation function f( ) l Nonlinear activation funct

Output » Ay 3

9 =f(Wx + b)



Interpreting a Linear Classifier

f(xi; W: b) — Wx,; + b

. ,___,(The linear classifier A
At ’ defines a decision plane:

/




Neural Networks: activation function

f(x) = tanh(x)

Sigmoid - f(x) = (1 + e ™)1 T

Linear — f(x) =ax+ b

ReLU f(X) — maX(O, x) Nlog(l + exp(x) ) sigmoid
= Rectifier Linear Units

= Faster training - no gradient vanishing
= |Induces sparsity

= 0 1
RelU (soft and hard)



Multi-Layer Perceptron (MLP)

Activation functions (individual layers)
frw, (x) = o(Wyx + by)
fow, () = a(Wax + by) e
faw,(x) = a(W3x + bs) e

input layer

hidden layer 1 hidden layer 2

Score function

yi=f(x) = f3;W3 (fz;w2 (]C1;W1 (x:)))

How to integrate all the output scores?



Neural Network: loss function

(or cost function or objective)

Scores Label -—> Loss
flzW)  yi=2(dog)  L;=7?
Image x; 0 (duck)? -12.3 How to assign
: 1 (cat) ? 45.6 only one number
‘k 2 (dog) ? 98.7 = representing
‘ 3 (pig) ? 12.2 how “unhappy”
(Size: 32*32*3) 4 (bird) ? -45.3 we are about

Multi-class problem these scores?

The loss function quantifies the amount by which
the prediction scores deviate from the actual values.



First Loss Function: Cross Entropy Loss

(or logistic loss)

Logistic function: o(f) =

1+e 7
Logistic regression:  p(y; = "dog"|x;w) = o(wlx;)
(two classes) = true

for two-class problem

a(f)

O-r-——-—-—— - — -

e

f » Score function



First Loss Function: Cross Entropy Loss

(or logistic loss)
Logistic function:

1
or(f):1+e‘f

Logistic regression:  p(y; = "dog"|x;;w) = o(wTlx;)
(two classes) = true

for two-class problem

Softmax function: o
(multiple classes) pilx; W) = S ol

Cross-entropy loss: Softmax function

Minimizing the
negative log likelihood.




Second Loss Function: Hinge Loss

(or max-margin loss or Multi-class SVM loss)

L= Y |max(0,(f(z;, W), — f(zi, W), |+ A)
T I7Yi T
lossdueto X

difference between the correct class

example i sum over all _
score and incorrect class score

Incorrect labels

scores for other classes score for correct class

| delta
- + >
| score



Different concepts

Logistic Function Softmax Function
1

a(x) = x
1 (1 + e—(wa+b)) e’y
= — 0, . . J(x) = P
o (x) (1+e™) 0(x) = max(0, x) (Or Linear Function + Yoy j e
Sigmoid)
Cross-Entropy Loss
L(p,y) == —logp, L(x,y) = z - max(0,x; — xy, + A)
J*y

Linear Classifier .. :
(Perceptron) Logistic Regression \Y/

(Linear Function +
Activation) X L + Softmax +
Cross-Entropy Loss

Logistic Function + Cross-

sign(w'x + b) Entropy Loss



Brief History of Deep Learning

Early neural networks

SENSORY
UNITS

(S-UNITS)
RETINAL

e DO UNITS

RETNA CIRCUITS

(g

WS

:\H\H\U :

ASSOCIATION
UNITS
(A-UN1TS)

RESPONSE
UNITS
(R-UKITS)

-

ol

BE

I
0

NS

L=]-]

Perceptron, one of the first neural network architectures

Rosenblatt 1957

/ /\ >
F. Rosenblatt




Brief History of Deep Learning

“Simple perceptron”

" y = sign(wTx)




Brief History of Deep Learning

Early hype

THE

NEW YORKER

“First serious rival to the
human brain even devised.”

“Remarkable machine o

capable of what amounts to =

thought” i e
— The New Yorker S ETass :

Manson, Stewart, Gill 1958



Brief History of Deep Learning

The “XOR Affair”

0,1 1,1
s} [ ]
0,0 1,0
@ (&)
‘ijl’crccplrons
XOR

“[simple] perceptron
cannot represent even
the XOR function”

Minsky, Papert 1969



Brief History of Deep Learning




Brief History of Deep Learning

Universal approximation

D. Hilbert A. Kolmogorov V. Arnold K. Hornik

2n n
13th Problem f(Z15...y20) = Z ?, ( ¢q,p($p)) Results specific to multilayer
=0 p=1 neural networks

Hilbert 1900; Arnold 1956; Kolmogorov 1957; Cybenko 1989; Hornik 1991



Brief History of Deep Learning

Universal approximation

Y

X y -

“A 2-layer perceptron can approximate
a continuous function to any desired
accuracy”

57

Cybenko 1989; Hornik 1991; Barron 1993; Leshno et al 1993; Maiorov 1999; Pinkus 1999
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Learning Model Parameters

We have our training data
" X={xq,x,..,X,} (€.9.images, videos, text etc.)
" Y= {yll yZJ ---;yn} (Iabels)

We want to learn the W (weights and biases) that leads to best loss

argmin[L(X,Y,w )]
w

The notation means find W for which L(X,Y,w ) has the lowest value



Optimization




Analytical Gradient

If we know the function and it is differentiable
» Derivative/gradient is defined at every point in f
» Sometimes use differentiable approximations
= Some are locally differentiable

Examples:
4
1+e*" dx

d
FO) = (x = 9% = 260~ )

f(x) = = (1= f)fx)



How to follow the gradient

Many methods for optimization
* Gradient Descent (actually the “simplest” one)
= Newton methods (use Hessian — second derivative)

» Quasi-Newton (use approximate Hessian)
= BFGS
= |BFGS
= Don’t require learning rates (fewer hyperparameters)

= But, do not work with stochastic and batch methods so rarely used to train modern
Neural Networks

All of them look at the gradient
» Very few non gradient based optimization methods



Parameter Update Strategies

Gradient descent:

/9 (t+1) T/Ht — EkIZQL — Gradient of our loss function

New model Previous
parameters parameters

€Ex = (1 T/(Z)E\(‘) + (€ 71— Decay learning rate linearly until iteration

Decay Initial learning rate



Gradient Computation

Chain rule:
ay_ayah y = f(h)
dx O0hox

h=g(x)



Gradient Computation

Multiple-path chain rule:
gy O dy oh; (7) ¥ = fluho by
dx 4u0h; Ox
J

() (h)  (hy) by =900
(x)



Gradient Computation

Multiple-path chain rule:

(¥) 3= fhy by 1)

0y O 0y Oh;

0x; £ 0h;0x;
J

0x, L dh;dx;
J

dx;  Z£u0h; dxs
]



Gradient Computation

Vector representation:

B dy 0dy 0y y =f(h)
 |0xy  0xy 0x4

X

W
Gradient

\ . h=g(x)

ey = x Vh)\’

/ “backprop” Gradient
“local” Jacobian

(matrix of size |h| X |x| computed
using partial derivatives)




Back-Propagation Algorithm (efficient gradient)

L= —logP(Y =y|z)

Forward pass
(cross-entropy)

= Following the graph topology,

compute value of each unit z = matmult(h,, W3)

Backpropagation pass
= Initialize output gradient = 1 @ hy, = f(hy; W))

= Compute “local” Jacobian matrix
using values from forward pass

= Use the chain rule:

Gradient = “local” Jacobian X

“backprop” gradient
= Why is this rule important?




Computational Graph: Multilayer Feedforward Network

L= —logP(Y =y|z)
(cross-entropy)

Computational unit:

« Multiple input
h=f(x;W) | « One output

« VVector/tensor z = matmult(h,, W3)

= Sigmoid unit:

" IO-O--O-G

Differentiable “unit” function!

(or close approximation to compute “local Jacobian)




Interpreting learning rates

A 25
loss

20

low learning rate =

high learning rate

\05

good learning rate

20 40 60 80 100




Critical Points

local min local max saddle point




Detecting Saddles

One way to detect saddles:
» Calculate Hessian at point x
» |f Hessian is indefinite you have a saddle for sure.
» |f Hessian is not indefinite you really can’t tell.

“My loss isn’t changing”
* You are definitely close to a critical point
= You may be in a saddle point
= You may be in the local minima/maxima
* One trick: quickly check the surrounding
» Best practical trick if Hessian is not indefinite.



Adaptive Learning Rate

Key Idea: Let neurons who just started learning have huge learning rate.

Adaptive Learning Rate is an active area of research:
= Adadelta
= RMSProp

cache = decay_rate * cache + (1 - decay_rate) * dx**2
X += - [earning_rate * dx / (np.sqrt(cache) + eps)

= Adam
m = beta1*m + (1-beta1)*dx
v = beta2*v + (1-beta2)*(dx**2)
X += - |earning_rate * m [/ (np.sqrt(v) + eps)



Adaptive Learning Rate

—  SGD

- Momentum
- NAG

- Adagrad
Adadelta
Rmsprop

1.0




Bias Variance

Problem of bias and variance

=  Simple models are unlikely to find the solution to a hard problem, thus
probability of finding the right model is low.

T~ Not an issue these days!

Real
@ e @ @ ® (=]
¢ ()] e @
e @ ¢ @
@ @ 2]
Q @ @ @




Bias Variance

Problem of bias and variance

=  Simple models are unlikely to find the solution to a hard problem, thus
probability of finding the right model is low.

=  Complex models find many solutions to a problem, thus probability of

finding the right model is again low.
A big issue with

deep learning!




Parameter Regularization

Adding prior to the network parameters
= LP Norms

L L?
Minimize: Loss(x; 8) + «||8]||

LOO



Structural Regularization

Lots of models can learn everything.
= Go for simpler ones. «

— Occam’s razor

Take advantage of the structure and “invariances” present in
each modality:

= CNNs: translation invariance
= LSTMs: sequential structure
» GRUs: sequential structure



o« THEANRNRSHEMTRT

- THREZANSFIEEX

« EIRMHEMBERIRIE

« EIEMZMEHMIL K



	Slide 1: 《多模态机器学习》 第二章 基础概念
	Slide 2: 内容提纲
	Slide 3: 内容提纲
	Slide 4: Unimodal Representation: Visual Modality
	Slide 5: Unimodal Representation: Visual Modality
	Slide 6: Unimodal Representation: Visual Modality
	Slide 7: Unimodal Representation: Visual Modality
	Slide 8: Unimodal Representation: Language Modality
	Slide 9: Unimodal Representation: Language Modality
	Slide 10: Unimodal Representation: Language Modality
	Slide 11: Unimodal Representation: Acoustic Modality
	Slide 12: Unimodal Representation: Acoustic Modality
	Slide 13: Unimodal Representation: Tactile Modality
	Slide 14: Unimodal Representation: Tactile Modality
	Slide 15: Unimodal Representation: Tables
	Slide 16: Unimodal Representation: Graphs
	Slide 17: Unimodal Representation: Sets
	Slide 18: 内容提纲
	Slide 19: Machine Learning
	Slide 20: Supervised Learning
	Slide 21: Simplest Classifier ?
	Slide 22: Simple Classifier: Nearest Neighbor
	Slide 23: Simple Classifier: Nearest Neighbor
	Slide 24: Simple Classifier: Nearest Neighbor
	Slide 25: Definition of K-Nearest Neighbor
	Slide 26: Linear Classifier
	Slide 27: Linear Classifier
	Slide 28: Linear Classifier
	Slide 29: Classifier Margin
	Slide 30: Support Vector Machine: Maximum Margin
	Slide 31: Support Vector Machine: Maximum Margin
	Slide 32: Support Vector Machine: Maximum Margin
	Slide 33: Going beyond Classifiers…
	Slide 34: 内容提纲
	Slide 35: Neural Networks: inspiration
	Slide 36: Neural Networks: score function
	Slide 37: Basic Neural Network Building Block
	Slide 38: Interpreting a Linear Classifier
	Slide 39: Neural Networks: activation function
	Slide 40: Multi-Layer Perceptron (MLP)
	Slide 41: Neural Network: loss function
	Slide 42: First Loss Function: Cross Entropy Loss
	Slide 43: First Loss Function: Cross Entropy Loss
	Slide 44: Second Loss Function: Hinge Loss
	Slide 45: Different concepts
	Slide 46: Brief History of Deep Learning
	Slide 47: Brief History of Deep Learning
	Slide 48: Brief History of Deep Learning
	Slide 49: Brief History of Deep Learning
	Slide 50: Brief History of Deep Learning
	Slide 51: Brief History of Deep Learning
	Slide 52: Brief History of Deep Learning
	Slide 53: 内容提纲
	Slide 54: Learning Model Parameters
	Slide 55: Optimization
	Slide 56: Analytical Gradient
	Slide 57: How to follow the gradient
	Slide 58: Parameter Update Strategies
	Slide 59: Gradient Computation
	Slide 60: Gradient Computation
	Slide 61: Gradient Computation
	Slide 62: Gradient Computation
	Slide 63: Back-Propagation Algorithm (efficient gradient)
	Slide 64: Computational Graph: Multilayer Feedforward Network
	Slide 65: Interpreting learning rates
	Slide 66: Critical Points
	Slide 67: Detecting Saddles
	Slide 68: Adaptive Learning Rate
	Slide 69: Adaptive Learning Rate
	Slide 70: Bias Variance
	Slide 71: Bias Variance
	Slide 72: Parameter Regularization
	Slide 73: Structural Regularization
	Slide 74: 总结

