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(1) Cross-modal interactions
@ Additive and multiplicative fusion

@ Gated fusion



RS

(1) Cross-modal interactions



Task 1: Representation (FR7R)

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

wsp This is a core building block for most multimodal modeling problems!

Individual elements:

Modality A A\ It can be seen as a “local” representation
or

Modality B @ representation using holistic features



Task 1: Representation (F=27R)

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

Sub-challenges:

Fusion Coordination Fission
A © A © A ©

# modalities > # representations # modalities = # representations # modalities < # representations




Cross-modal Interactions

A ~ |
@._ response g

signals “Inference” examples:
« Representation fusion
» Prediction task
« Modality translation

A\

>m EEER or @or
@._

representation

elements



Cross-modal Interactions

Types of
® interaction
responses?

(A =~ )
A
- D O
‘ _ response
\\SIQnals )

Is this
a living
room? _
A teacup on the right of a
laptop in a clean room.

(a taxonomy)

D ves/

No, probably
study room.

Unimodal
Non-redundancy

A —
@ -




Cross-modal Interactions

Is this
a living
room?

A teacup on the right of

laptop

in a clean room.
_/

\
Types of
g o orc- 16 B
‘ » response responses?
signa I (a taxonomy)
g 4
\

> m Yes!

Unimodal
Non-redundancy

A —
@ -
AQ®—>

Multimodal
dominance




Taxonomy of Interaction Responses: A Behavioral Science View

s, signal response ; signal response
1) :
A = a |
©, 5 a—> . ath — Equivalence
O response c 5
inputs =
S b— . atb —> Enhancement
m 1
o atb —> [ Jand() Independence
-
© a —>
© .
c atbh —> Dominance
-
B b—> (O |
= atb —> (or[_]) Modulation
2
atbh = /\ Emergence

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)



Cross-modal Interactions

(A -
(5) Connections 4“ B (+) Context
Association _ : >m@ =  Structure context

= ¢

= Dependency . » response = Task relevance
]

]

Correspondence signals = Context dependence
Relationship

@ Interactions
@ Modalities . Additive @ Responses
= Unimodal = Multiplicative = Redundancy
= Bimodal = Polynomial = Non-redundancy
= Trimodal = Gated = Dominance
= High-modal, = Nonlinear = Emergence

Today
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@ Additive and multiplicative fusion



Sub-Challenge 1a: Representation Fusion

I Definition: Learn a joint representation that models
cross-modal interactions between
/]\ iIndividual elements of different modalities
A ©
Basic fusion: Raw-modality fusion:

\

I Modality A A

Modality B (I Modality B @
J

Modality A (IR




Fusion with Unimodal Encoders

encoder 1111

Modality A A\
Closer homogeneltyI m 117

Modality B @ [REIleelel=s L

Example:
CNN, V|T

Image W encoder 1T
m—

Language ‘happiness” encoder _
|

Word2vec, BERT, ...

w=p Unimodal encoders can be jointly learned with fusion network, or pre-trained



Early and Late Fusion — A historical View

Early fusion:

Modality A [
D

Concatenate

e 36

Modality B [HIEEN
J

Late fusion:

\
Modality A [
Modality B J




Basic Concepts for Representation Fusion (aka, Basic Fusion)

Modality A (I
XA

Modality B (BN
XB

Linear regression:

Z = Wy + W1X4y + WrXp + Wg(xA X xb) + €
\ J \ J

\

),

/

Y
intercept Additive
(bias term) terms

Multiplicative

¥

term

Goal: Model cross-modal interactions
between the multimodal elements

s |et's study the univariate case first

L»(only 1-dimensional features)

error
(residual term)



Linear Regression

Linear regression is used to test research hypotheses, over a whole dataset

/

\

300 book reviews - aydience score A
X 4 - percentage of smiling
Xp . professional status
(O=non-critic, 1=critic) )

Linear regression:

y = Wy -I-\Wle -+ szB}+\W3 (x4 X xb)}+ € <

A 4
intercept Additive
(bias term) terms

Y

Multiplicative  error

term

(residual term)

~

.

H1: Does smiling reveal what the
audience score was?

H2: Does the effect of smiling depend
on professional status?
W, average score when x, and xz are zero
w;: effect from x4 variable only
w,: effect from xz variable only

w;: effect from x, and xg interaction only

w

e: residual not modeled by w,, wy, w, or wy



Linear Regression

Linear regression Is used to test research hypotheses, over a whole dataset
g . N

300 book reviews y: audience score H1: Does smiling reveal what the
audience score was?

X - percentage of smiling

Xp . professional status
(O=non-critic, 1=critic)

J/

Confidence interval: “95% confident that w parameter is
contained within this interval”

Z = Wy + W11X 4 + €
—— -Mﬁ.

_inear regression:

Wy 4.63 [4.20, 5.06]

C[ w, 1.20 [0.83,1.57] |
Confidence interval does not

contain 0, so effect is significant

smile xA ‘



Confidence Interval

1. SHBIFREZAER
SRAMIEECHR, £ Z 9% KitE.

YN W
CI=X+Z,,- \if
n
0 _
68% . X:HAHE
o . Z1E, RIRLERESKT (B0, 95% BEKTE, Z,» = 1.96)
. o BURERAEE
o n: BEAAIN
2. RE SRR
95% SRR ESRAIRS, {5FD t 9 SR
YN W
_ s
CI - X :l: ta/?,df y ﬁ

o X:HEAIE
o topaptE, BEFEAXNAnEREJf =n - 18X



Linear Regression

Linear regression Is used to test research hypotheses, over a whole dataset

/

300 book reviews

Yy audience score
X 4 - percentage of smiling

Xp . professional status
(O=non-critic, 1=critic)

\

J

Z=W0-I-W1xA-I-

10-

8 | e
.

score

_inear regression:

WolX g + €

is_critic

0
s

Wo

W1

W

5.29
1.19
—1.69

95% CI
[4.86,5.73]
[0.85, 1.53] Positive effect

[—2.14,—1.24] mmp Negative effect




Linear Regression

Linear regression Is used to test research hypotheses, over a whole dataset
. . )

300 book reviews y: audience score

X - percentage of smiling

Xp: professional status H2: Does the effect of smiling depend
(0=non-critic, 1=critic) on professional status?

. | _/
_inear regression:

= o+ + s+ x0) + ¢

o I e Wy 5.79 [5 29, 6.29]
L et e o wy 0.68 [0.25,1.11]
y 7 W, —2.94 [—3.73, —2.15]
A= e L _ Multiplicative
N : Vs 1.29 [SL LT g interaction!




Basic Concepts for Representation Fusion (aka, Basic Fusion)

| \
Modality A x— Goal: Model cross-modal interactions
4 m SEEE between the multimodal elements
Modality B x— ) wsp Let's study the univariate case first
B L»(only 1-dimensional features)
Linear regression: @ Additive terms:

Z =WiX4 + WyXp + €
Z = Wy + W1X4y + WrXp + Wg(xA X xb) + €
\ J \ J

Y : H “: 3 » s
intercept Additive Multiplicative  error @ Multiplicative “interaction” term:
(bias term) terms term  (residual term) z=w3(xy Xxp) +¢€

@ Additive and multiplicative terms:
Z = WiX4 + WyXp + Wg(xA X Xb) = £



Additive Fusion

\
Modality A (RN
XA

Modality B (I
Xp /

With unimodal encoders:

Modality A A encoder
fa

encoder

Ij:

Modality B @

wsp Back to multivariate case!

[TTT]
V4

\

,m’

Additive fusion:
Z = Wle + WZxB

= 1-layer neural network
can be seen as additive

Additive fusion:

z=f(A)+ (@)

msp |t could be seen as an

ensemble approach
(late fusion)



Multiplicative Fusion

Modality A _ Simple multiplicative fusion:
_

z=x40Oxp

Modality B _

Modality A _

Bilinear Fusion:
Bilinear
Modality B (RN

Xp vec(Z) = x4 Q xp

Jayakumar et al., Multiplicative Interactions and Where to Find Them, ICLR 2020



Kronecker product

If A € R™", B € RP*4, then the Kronecker product 4 @ B € RP™*an;

CL11B a,lnB
A®B=

_a'mlB Tt afmnB

Jayakumar et al., Multiplicative Interactions and Where to Find Them, ICLR 2020



Multiplicative Fusion

rIU ’\ bimodal
tive) (multiplicative)

Modality A _II

g wbl

Modality B -II

Modality A -II bimodal
(multiplicative)
4 )
Modality B —11 ... but the weight
Node matrix may end
' |
Modality C EEIj:El uP quite large? J

trimodal
(multiplicative)

Tensor Fusion (bimodal):

Z =[x,1]"[ x5 1]

Zadeh et al., Tensor Fusion Network for Multimodal Sentiment Analysis, EMNLP 2017



Low-rank Fusion

Visual |
Low-rank -
Fusion 1.
Language ||
(3) Rearrange the computation of h.
(2) Decomposition Jof input tensor Z.
(1) Decomposition 4 of weight .
Visual | ]
Tensor I
) ' | h
Fusion L]
Language ||

. /

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018



Low-rank Fusion

vec(Z) - vec(W)

= (2,Q2) () W @w™)

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018




Low-rank Fusion with Trimodal Input

Tensor Fusion

&

Low-rank Fusion :

N [ N b
4 Low-rank factors 4 Low-rank factors )
ﬁ ﬁ ﬁ .! O i-l-i-l-‘“-l_i | I o i+i+ ”.+i |
w® w® W) a] w® W@ WO M T N G
\ v A\ l 1/ ) e a a a)

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018



Going Beyond Additive and Multiplicative Fusion

Additive interaction:
Z = WiX4 + WoXp %= First-order polynomial

Additive and multiplicative interaction:
Z = wyxg + Wyxg + w3y X xp) é===a Second-order polynomial

Trimodal fusion (e.g., tensor fusion):
Z=WiXgq + WoXg +Wsxe + wu(xg X x¢) + we(xy X x¢0) +wg(xp X x¢0) +Wo (x4 X x5 X Xx()

\ J \ J \ J

. 4 v v
Unimodal terms Bimodal terms Trimodal terms
(first-order) (second-order) (third-order)
4 ) F . 2 2 2
or example: +wg(xf X xg X x5)
Can we add P siA B e
~higher-order +wo(x3 X x5)
interaction terms?

- J +wyo(xp X x3)




Gated Fusion

Example with additive fusion:

Z=gs(x4,xp) - X4 + gp(x4,Xp) - Xp

s g, and gp can be seen as attention functions

ModalityB DEEE ® B for the whole modality

£

Arevalo et al., Gated Multimodal Units for information fusion, ICLR-workshop 2017

Modality A HHEN © O | |
m [TTT] N Gating output can be one weight
Z
y




Gating Module (aka, attention module)

|

What should it be? ...or with a more positive view:

“Neural network designed to mask unwanted
Input =—» - signal from propagating forward” (qating)

“Neural network designed to select preferable

Target modality [N signal to move forward”

Other modality (HEEN

Soft attention
117 J

[ All modality

Hard attention

~
~

(attention)

Easier to compute
derivative (gradient)

Derivative is harder (e.qg.,
use reinforcement learning)

Chen et al., Multimodal Sentiment Analysis with Word-level Fusion and Reinforcement Learning, ICMI 2017



Task 1: Representation (F=27R)

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

Sub-challenges:

Fusion Coordination Fission
A © A © A ©

# modalities > # representations # modalities = # representations # modalities < # representations




Sub-Challenge 1b: Representation Coordination

I_,I Definition: Learn multimodally-contextualized
representations that are coordinated
‘ I through their cross-modal interactions

A ©

Strong Coordination: Partial Coordination:

Modality A _\_ Modality A (SRR —— BN

$ l

Modality B e —" Modality B ([ ——
—



Coordination Function

Z, Coordination function

Modality A A\ e”Oder T /)' Learning with coordination function:
A g\Zy,Zp
L= g(fA(‘):fB(.))
Modality B . encoder @ |
fB Zg with model parameters 6., 6, and 6,
s Requires paired data

Examples of coordination function:
Zy*Zp

1z4llllzg ]l

@ Cosine similarity:

9(z4,2p) = Strong coordination!

msyp For normalized inputs (e.g., z, — Z;) , equivalent to Pearson correlation coefficient



Coordination Function

Z, Coordination function

Modality A A enOder _— / Learning with coordination function:
, [g(zA, Z5)
L= g(fA(‘):fB(.))
Modality B . encoder @ |
fB Zg with model parameters 6., 6, and 6,
s Requires paired data

Examples of coordination function:

(@ Kernel similarity functions:

9(z4,25) = k(z4,25) L+ Linear wp All these examples bring
Ar4B Ar“4B . ) ; ;
+ Polynomial relatively strong coordination
* Exponential between modalities

 RBF



Kernel Function

A kernel function: Acts as a similarity metric between data points

K(xl-, xj) — ¢(xl.)T¢(xj) — (gb(xi), ¢(xj)) B ¢(x) can be high-dimensional space!

A .
1 Qo 14 = G
® IG .. - .‘; : % °,
o 8% 0% ©
© e .o ® °® - e ST PR R
Q i : LY N
e® . .l ® ® e @ 5 o8 ‘.’Gr . ‘D. e 0".‘-?
® Oo e . o © g R A R R
G rrnvaramRzcaa PR S —— > 06 1
ML S =
1 .. =] 0.4
@ | S
P 1 0.2 4 "f“.“ PN
0 : OO O i ‘:A
@! QO [=] 10 45
1 = 0 e 00 05 10
! Y Labgy -1.0 -1.0 05 % {xbal
\%
Not linearly separable in x space Same data, but now linearly separable in ¢(x) space

1
' Radial Basis Function (RBF) Kernel : K (xl-,xj) = exp (—7‘2 | — xj”2>



Coordination Function

Z, Coordination function

Modality A A [CLtCs) NN
I / Learning with coordination function:

fA g(ZA; ZB)
Modality 8 @ [EENED nEm L=g(f,(M), (@)

/B ZB with model parameters 6, 6, and 6,,

Examples of coordination function:

(3 Canonical Correlation Analysis (CCA):

argmax corr(z,, Zg)
V;U;fA;fB

e CCA includes multiple projections,
all orthogonal with each others




Retrospect: Principal Component Analysis (PCA)

T 2
Second principal component arg max ”u X”

\/ ' s.tu'u=1
F

irst principal component




Correlation

cov(X,Y E[(X — Y —
pxy =corr(X,Y) = ( ) _ [ px)( py )]
OxO0y OxOy

X,Y independent = pxy =0 (X,Y uncorrelated)
pxy =0 (X,Y uncorrelated) = X,Y independent

i
L e e e e e e e e e e m e m e mm e m e m—m———————————o



Correlation

1. ZIXRREXRRIBIF

RHENEE X 995 HERE [—1,1], EXY = X2, B X MY ZASARRIRIN, B
Y 22l X RE, BellZ AMEXM, EANSLEAZ.

o IEBAARERTE:
Cov(X,Y) = E[XY] - E[X]|E[Y]
BFY = X?, ®iTALITE:
E[X] =0 (BN X REEMGE, SHMESEIMH K 0)
EX*] =0 (ZHRHMET [-1,1], HIHERN 0)

Eitt, Cov(X,Y) =0, BilfEx, BEA X fY R34z,

https://chatgpt.com/



https://chatgpt.com/

Correlated Projection

Learn two linear projections, one for each view,
that are maximally correlated:

U Ty v
3[_’ (u*,v") = argmax udd
P A \/uTzXXu\/szl(yv
oo o .
UT "V ° . '. . °
o o . * o e 0
w w .‘ ° .‘ ‘u . \o ° ®
A . : : . °F oo . . Y
Y
X . .

Two views X, Y where same instances have the same color

s Remember that X and Y consist of paired data



Correlated Projection

The first pair of canonical variables:

-
u' XyyV
(uy,v;) = argmax s
3 \/uTzXXu\/vTZyyv

Ve w

/ ~

Ut tv
N - @ Since this objective function is invariant to scaling, we
Am E can constraint the projections to have unit variance:

ZXXul =D 2:1/1/171 =1



Correlated Projection

The k-th pair of canonical variables:

N
u' Lyyv
(uy, v, ) = arg max uld

BL’ \/uTZXXu\/vT2yyv

; é @ We want these multiple projection pairs to be orthogonal
o 1T (“canonical”) to each other:
A O

uTZXXuj = 'UTZyyvj = O, V] = 1, ,k —1

https://en.wikipedia.org/wiki/Canonical_correlation



https://en.wikipedia.org/wiki/Canonical_correlation

Deep Canonically Correlated Autoencoders (DCCAE)

X' Y’
Text Image
00909 CIBHT)
rrasar) = [ J
1 2 o g ‘
___________ S
e a View H,, " ....-.‘, ~~~~~~
H, @0 --00] 00 ---00JH,
Un MV
(re|yn argmax corr(H,, H CrrE-I)
w.,l V,U%Vx,wy ( vy ) W,
00 - 00 i -
Text Image
X Y

Wang et al., On deep multi-view representation learning, PMLR 2015



Gated Coordination

Gated coordination:
» [LLT] Zy = ga(x4,xp) - X4

zg = gg(X4,X) - Xp

Zp sy Related to attention modules in transformers




Coordination with Contrastive Learning

Zy , ‘
ntrastive loss:
VModalityA A EXTE) mmEm Contrastive loss
ey brings closer and
Ja > pairs
pushes negative pairs apart

Modality B . encoder B

15 ZB Simple contrastive loss:
Paired data: {A @) max{0, @ + sim(z4, 25 ) — Sim(ZA,ig_)B
(e.g., images and text descriptions) negative pair
A O
A O
A (3 —
A 4 ~ositve pairs msp Similar to hinge loss
+«—— Negative pairs
A 5]




Example — CLIP (Contrastive Language—Image Pre-training)

(1) Contrastive pre-training

Pepper the
aussie pup

Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 (Citations: 9211-> 22407 )

o Text
Encoder

Image
Encoder

Zero-Shot Image Classification

v

v

(2) Create dataset classifier from label text

plane
car
dog > A phoﬁo of >
- a {object}.
Y Y \ 4 A
T T, T3 Tn
bird
LTy | 'Ty | I'Ts II'TN .
(8) Use for zero-shot prediction
IyTy | IyTy | 1Ty I, Ty
I3‘Tl 13'T2 I3'T3 I3'TN Image
Encoder
IyTy | InTy | InTs In'Tyn

Text
Encoder

I'Ty

A photo of

a dog.




Example — CLIP (Contrastive Language—Image Pre-training)

Pretrained Dataset (not open-sourved by openAl)

we constructed a new dataset of 400 million (image, text) pairs collected form a variety
of publicly available sources on the Internet. To attempt to cover as broad a set of visual
concepts as possible, we search for (image, text) pairs as part of the construction process
whose text includes one of a set of 500,000 queries. We approximately class balance the
results by including up to 20,000 (image, text) pairs per query. The resulting dataset has a
similar total word count as the WebText dataset used to train GPT-2. We refer to this
dataset as WIT for WeblImageText.

Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 (Citations: 9211-> 22407 )



Example — CLIP (Contrastive Language—Image Pre-training)

Encoders
Learning Embedding Input ResNet Text Transformer

Model rate dimension  resolution blocks width layers width heads

RNS50 5x10°* 1024 224 (3,4, 6, 3) 2048 12 512 8

RN101 5x 1074 512 224 (3,4, 23,3) 2048 12 512 8

RN50x4 5x 1074 640 288 (4, 6, 10, 6) 2560 12 640 10

RN50x16 | 4 x107* 768 384 (6, 8, 18, 8) 3072 12 768 12

RN50x64 | 3.6 x 10~* 1024 448 (3, 15,36, 10) 4096 12 1024 16

Table 19. CLIP-ResNet hyperparameters
Learning  Embedding Input Vision Transformer Text Transformer

Model rate dimension  resolution layers width heads layers width heads
ViT-B/32 5x107* 512 224 12 768 12 12 512 8
ViT-B/16 5x107* 512 224 12 768 12 12 512 8
ViT-L/14 4 x107* 768 224 24 1024 16 12 768 12
ViT-L/14-336px | 2 x 107" 768 336 24 1024 16 12 768 12

Table 20. CLIP-ViT hyperparameters

Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 (Citations: 9211-> 22407 )



Example — CLIP (Contrastive Language—Image Pre-training)

# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer . . -
# I[n, h, w, c] - minibatch of aligned images Symmetric InquCE (Noise Contrastive
# T[n, 1] - minibatch of aligned texts Estimation) loss
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t - learned temperature parameter 1
L ==(Limage + £
# extract feature representations of each modality 2(: Hmage u»d)
I_f = image_encoder(I) #[n, d_i] Positive pair
T_f = text_encoder(T) #[n, d_t] P

N |sim Z; image: Zi |
# joint multimodal embedding [n, d_e] L — _l E logw
I_e = 12_normalize(np.dot(I_f, W_i), axis=1) tmage N £aj—q N sim (z; Z; text)
: : ]_jl i,images Zj text I
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)

Negative pairs

# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)

N sim (Zz; ; VZ;
# symmetric loss function Lioxt = —— log ( Limage i text)
labels = np.arange(n) © N i=1 N sim (Zz; Z; )
: : : j=1 j,imager 4itext
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
loss = (loss_i + loss_t)/2

Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 (Citations: 9211-> 22407 )



Example — CLIP (Contrastive Language—Image Pre-training)

ImageNet Zero-Shot
Dataset Examples ResNet101  CLIP A Score

ImageNet 76.2 76.2 0%

ImageNetV2 [ § l‘ 64.3 70.1 +5.8%

37.7 889 +51.2%

32.6 723 +39.7%

ImageNet
Sketch

25.2 60.2 +35.0%

2.0 771 +74.4%

Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 (Citations: 9211-> 22407 )



Homogeneous Coordination with Channel Exchanging

Homogeneous Multimodal Learning: The modalities to fuse are of the

same shape; there is certain correspondence between their each element [ Sparsity constraints |
/—%
Vi {@O e
Z B

Modality A A encoder
fa

Channel

Modality 1 K

Modality B . encoder @

_____ Channel exchanging |_| -
/B ZB

Parameter-free, Self-adaptive

'::f

| Sparsity constraints |

/—%
Y2 ST I

Deep Multimodal Fusion by Channel Exchanging, NeurlPS 2020.



Task 1: Representation (FR7R)

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

Sub-challenges:
Fusion Coordination / Fission \

: - 11
PN || I
A O A O A O

# modalities > # representations # modalities = # representations \# modalities < #representaW




Sub-Challenge 1c: Representation Fission

Definition: learning a new set of representations that
reflects multimodal internal structure such

>< as data factorization or clustering

Modality-level fission: Fine-grained fission:
(LI T]
Modality A A\ OTT] Modality A A\ (TTT]
(LI [LIT]
[IIT]
Modality B . [TTT1] Modality B . [TTT1




Modality-Level Fission

Information primarily in language modality

« Syntactic structure
» Vocabulary, morphology

Language A '
Information in both modalities
» Described people, objects, actions
‘ * |llustrative gestures, motion
Visual O .
(image)

Information primarily in visual modality

« Texture, visual appearance
« Depth, perspective, motion



Modality-Level Fission

How to learn factorized
multimodal representations?

Language A

Visual

(image)




A Discriminative Approach — Factorized Multimodal Representations

ez |
L
e | - =m0

Hut Now 1o ensure
encoder I DUt Nnow W -,fJ > ., [e
-/ PDroper 1aClonZaliorn ¢

Modality A A

Modality B @




A Generative-Discriminative Approach
L,

ZAI decoder /\A
L= L]_ + LZ + 1:3
Modality A A -
L,: discriminative

I @ |
L,: generative

...........................................................

Modality B @ L, ' L no overlap

Tsai et al., Learning Factorized Multimodal Representations, ICLR 2019

S
...........................................................

A |
Separate priors
for z4, zg and zy




Modality-Level Fission —Information Theory

Information primarily in language modality

« Syntactic structure
» Vocabulary, morphology

Language A '
Information in both modalities
» Described people, objects, actions
‘ » lllustrative gestures, motion
Visual O .
(image)

Information primarily in visual modality

» Texture, visual appearance
» Depth, perspective, motion



Information and Entropy — Information Theory

Language A How much information in the modality?

X Information Theory g, .. on. 1948)
Main intuition: -

x: 12, 34, 45, 62 was not a winning combination” Informatlon content /(x)

@ Not surprising... So, low information I(x)~— But how

. o p(x) to scale?
x: 11, 28, 38, 58 was a winning combination”

m Low chances... So, higher information

1
I(x) = log (p( )) = —log(p(x))

Shannon, A Mathematical Theory of Communication, 1948



Information and Entropy — Information Theory

Information entropy (in bits) is the log-base-2 of the number of possible outcomes. With
two coins there are four outcomes HH-HT-TH-TT, and the entropy is two bits.

Shannon, A Mathematical Theory of Communication, 1948



Information and Entropy — Information Theory

Language A How much information in the modality?

X Information Theory g, .. on. 1948)

Information content 1(X) = —log(p(X))

® For discrete alphabet X', then X is discrete random variable

Entropy: weighted average of all possible outcomes from X

H(X) = EL(0] = E[-log(p(x))] == ) p(X)log®(X))

XEX

L Entropy can also be defined for continuous random variables



Information and Entropy

If no overlapping But in most real-world scenarios,
iInformation modalities are inter-connected

Modality A A A teacup on the right of a laptop

In a clean room.

Modality B @

Statistical Semantic

Association Dependency Correspondence  Relationship
used for

A0 A0 AZ%9 A0



Entropy with Two Modalities

H(A)

Modality A A

Modality B @

H(@®)



Entropy with Two Modalities

H(M)

Modality A A HA®) Conditional entropy H(Y|X)

:.\\ H(Y|X) = —Exy[logp(y|x)]

Modality B @ H(;T‘)) __E,, [logp(x, y)
’ p(x)

H(®)



Entropy with Two Modalities

Mutual information I(X;Y)

I(X;Y) = H(X) — H(X|Y)

Modality A A\ Py (2, )
= Exy [108 +log———
' Py (x) Py (y)
Modality B @ Pyy(x,y)
I(X;Y)=E lo
( ) ol { gPX(x)PY(y)

[(X;Y) = Dy, (Pxy(x,¥) Il Px(x)Py(y))



Link with Self-Supervised Learning

@ Maximize the mutual information

[(z;@®) and [(z;A)

m) Related to contrastive learning

(2) Minimize the conditional entropy
H(z|®) and H(z|A)

Information theory gives us a path towards
disentangled representation learning

Tsai et al., Self-Supervised Learning from a Multi-View Perspective, ICLR 2021



Some facts about information theory

H(A)

Modality A A

Modality B @

https://en.wikipedia.org/wiki/Conditional_entropy

1. Properties of mutual information:
I(X;Y)>0,I(X;Y) =1(YV;X)

2. Subadditivity:

HX)+H(Y) =HX,Y) +I(X;Y) = H(X,Y)
H(X) = HXIY) + I(X;Y) = H(X|Y)

3. The entropy or the amount of information revealed by evaluating
X and Y simultaneously is equal to: first evaluating the value of Y,

then revealing the value of X given that you know the value of .

H(X,Y) = HX|Y) + H(Y) = H(Y|X) + HX)

But,do we have H(X|Y) > 07??


https://en.wikipedia.org/wiki/Conditional_entropy

Fine-Grained Fission

Modality A A\ How to automatically discover

these internal clusters, factors?

Modality B @




Fine-Grained Fission — A Clustering Approach

Unimodal Encoders

_ Localized activations for different objects
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Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019



Fine-Grained Fission — A Clustering Approach Discovers
multiple :

audio-visual
Unimodal Encoders Multimodal Fission Correspondences
-Om-- \

Visual ConvNet
Y, Audiovisual
>>
! 'r " b l‘.' ll " ! , “L 1 Al s ] ' Wl
it B F B[N 2 b
Audio ConvNet R Yl e 1
J \_ Shared G Clustering Module )
‘7:\3, ” P \\k H - P &

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 20:. |



Task 1: Representation (FR7R)

Definition: Learning representations that reflect cross-modal interactions
between individual elements, across different modalities

Sub-challenges:

Fusion Coordination Fission
A © A © A ©

# modalities > # representations # modalities = # representations # modalities < # representations



	Slide 1: 《多模态机器学习》 第五章 多模态表示
	Slide 2: 课程提纲
	Slide 3: 内容提纲
	Slide 4: 内容提纲
	Slide 5: Task 1: Representation (表示)
	Slide 6: Task 1: Representation (表示)
	Slide 7: Cross-modal Interactions
	Slide 8: Cross-modal Interactions
	Slide 9: Cross-modal Interactions
	Slide 10: Taxonomy of Interaction Responses: A Behavioral Science View
	Slide 11: Cross-modal Interactions
	Slide 12: 内容提纲
	Slide 13: Sub-Challenge 1a: Representation Fusion
	Slide 14: Fusion with Unimodal Encoders
	Slide 15: Early and Late Fusion – A historical View
	Slide 16: Basic Concepts for Representation Fusion (aka, Basic Fusion)
	Slide 17: Linear Regression
	Slide 18: Linear Regression
	Slide 19: Confidence Interval
	Slide 20: Linear Regression
	Slide 21: Linear Regression
	Slide 22: Basic Concepts for Representation Fusion (aka, Basic Fusion)
	Slide 23: Additive Fusion
	Slide 24: Multiplicative Fusion
	Slide 25: Kronecker product
	Slide 26: Multiplicative Fusion
	Slide 27: Low-rank Fusion
	Slide 28: Low-rank Fusion
	Slide 29: Low-rank Fusion with Trimodal Input
	Slide 30: Going Beyond Additive and Multiplicative Fusion
	Slide 31: Gated Fusion
	Slide 32: Gating Module (aka, attention module)
	Slide 33: Task 1: Representation (表示)
	Slide 34: Sub-Challenge 1b: Representation Coordination
	Slide 35: Coordination Function
	Slide 36: Coordination Function
	Slide 37: Kernel Function
	Slide 38: Coordination Function
	Slide 39: Retrospect: Principal Component Analysis (PCA)
	Slide 40: Correlation
	Slide 41: Correlation
	Slide 42: Correlated Projection
	Slide 43: Correlated Projection
	Slide 44: Correlated Projection
	Slide 45: Deep Canonically Correlated Autoencoders (DCCAE)
	Slide 46: Gated Coordination
	Slide 47: Coordination with Contrastive Learning
	Slide 48: Example – CLIP (Contrastive Language–Image Pre-training)
	Slide 49: Example – CLIP (Contrastive Language–Image Pre-training)
	Slide 50: Example – CLIP (Contrastive Language–Image Pre-training)
	Slide 51: Example – CLIP (Contrastive Language–Image Pre-training)
	Slide 52: Example – CLIP (Contrastive Language–Image Pre-training)
	Slide 53: Homogeneous Coordination with Channel Exchanging
	Slide 54: Task 1: Representation (表示)
	Slide 55: Sub-Challenge 1c: Representation Fission
	Slide 56: Modality-Level Fission
	Slide 57: Modality-Level Fission
	Slide 58: A Discriminative Approach – Factorized Multimodal Representations
	Slide 59: A Generative-Discriminative Approach
	Slide 60: Modality-Level Fission –Information Theory
	Slide 61: Information and Entropy – Information Theory
	Slide 62: Information and Entropy – Information Theory
	Slide 63: Information and Entropy – Information Theory
	Slide 64: Information and Entropy
	Slide 65: Entropy with Two Modalities
	Slide 66: Entropy with Two Modalities
	Slide 67: Entropy with Two Modalities
	Slide 68: Link with Self-Supervised Learning
	Slide 69: Some facts about information theory
	Slide 70: Fine-Grained Fission
	Slide 71: Fine-Grained Fission – A Clustering Approach
	Slide 72: Fine-Grained Fission – A Clustering Approach
	Slide 73: Task 1: Representation (表示)

