

《多模态机器学习》

第五章 多模态表示

黄文炳 中国人民大学高瓴人工智能学院

hwenbing@126.com

2024年秋季

课程提纲

单模态表示

视觉模态

文本模态

三维点云

动作模态

基本概念

神经网络及其优化

经典多模态机器学习

多模态表示

多模态对齐

多模态推理

多模态生成

多模态迁移

通用多模态机器学习

通用多模态(大)模型

多模态预训练

多模态典型应用

内容提纲

- ① Cross-modal interactions
- 2 Additive and multiplicative fusion
- 3 Gated fusion

内容提纲

- ① Cross-modal interactions
- 2 Additive and multiplicative fusion
- 3 Gated fusion

Task 1: Representation (表示)

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

This is a core building block for most multimodal modeling problems!

Individual elements:

It can be seen as a "local" representation or

representation using holistic features

Task 1: Representation (表示)

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Modality translation

Unimodal Non-redundancy

inference Yes!

Is this a living room?

A teacup on the right of a laptop in a clean room.

No, probably study room.

Is this a living room?

Taxonomy of Interaction Responses: A Behavioral Science View

Partan and Marler (2005). Issues in the classification of multimodal communication signals. American Naturalist, 166(2)

内容提纲

- ① Cross-modal interactions
- 2 Additive and multiplicative fusion
- 3 Gated fusion

Sub-Challenge 1a: Representation Fusion

Definition: Learn a joint representation that models cross-modal interactions between individual elements of different modalities

Basic fusion:

Raw-modality fusion:

Fusion with Unimodal Encoders

Unimodal encoders can be jointly learned with fusion network, or pre-trained

Early and Late Fusion – A historical View

Early fusion:

Late fusion:

Basic Concepts for Representation Fusion (aka, Basic Fusion)

Goal: Model *cross-modal interactions* between the multimodal elements

Let's study the univariate case first

(only 1-dimensional features)

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Multiplicative error
(bias term) terms term (residual term)

Linear Regression

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

y: audience score

 x_A : percentage of smiling

 x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$y = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Multiplicative error (bias term) terms term (residual)

Additive terms

Multiplicative error (residual term) term

 w_0 : average score when x_A and x_B are zero

 w_1 : effect from x_A variable only

 w_2 : effect from x_B variable only

 w_3 : effect from x_A and x_B interaction only

 ϵ : residual not modeled by w_0 , w_1 , w_2 or w_3

Linear Regression

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

y: audience score

 x_A : percentage of smiling

 x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$z = w_0 + w_1 x_A + \epsilon$$

Confidence interval: "95% confident that w parameter is contained within this interval"

		Estimate	95% CI	
	w_0	4.63	[4.20, 5.06]	
	w_1	1.20	[0.83, 1.57]	

Confidence interval does not contain 0, so effect is significant

p-values would be another way to test hypothesis

Confidence Interval

当总体标准差已知时,使用 **Z 分布**来计算。

公式:

$$CI = ar{X} \pm Z_{lpha/2} \cdot rac{\sigma}{\sqrt{n}}$$

- X̄: 样本均值
- $Z_{lpha/2}$: Z 值,对应给定的置信水平(例如,95% 置信水平时, $Z_{lpha/2}=1.96$)
- σ: 总体标准差
- n: 样本大小

2. 未知总体标准差的情况

当总体标准差未知时,使用 t 分布 来计算。

公式:

$$CI = ar{X} \pm t_{lpha/2,df} \cdot rac{s}{\sqrt{n}}$$

- X̄: 样本均值
- $t_{lpha/2,df}$: t 值,基于样本大小 n 的自由度 df=n-1 查表

Linear Regression

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

y: audience score

 x_A : percentage of smiling

 x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + \epsilon$$

$$y = w_0 + w_1 x_A + w_2 x_B + \epsilon$$
is_critic

	Estimate	95% CI	
w_0	5.29	[4.86, 5.73]	
w_1	1.19	[0.85, 1.53]	Positive effect
W_2	-1.69	[-2.14, -1.24]	Negative effect

Linear Regression

Linear regression is used to test research hypotheses, over a whole dataset

300 book reviews

y: audience score

 x_A : percentage of smiling

 x_B : professional status (0=non-critic, 1=critic)

H1: Does smiling reveal what the audience score was?

H2: Does the effect of smiling depend on professional status?

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

	Estimate	95% CI
W_0	5.79	[5.29, 6.29]
W_1	0.68	[0.25, 1.11]
W_2	-2.94	[-3.73, -2.15]
W_3	1.29	[0.61, 1.97]

Basic Concepts for Representation Fusion (aka, Basic Fusion)

Goal: Model *cross-modal interactions* between the multimodal elements

Linear regression:

$$z = w_0 + w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

intercept Additive Multiplicative error
(bias term) terms term (residual term)

1 Additive terms:

$$z = w_1 x_A + w_2 x_B + \epsilon$$

2 Multiplicative "interaction" term:

$$z = w_3(x_A \times x_b) + \epsilon$$

3 Additive and multiplicative terms:

$$z = w_1 x_A + w_2 x_B + w_3 (x_A \times x_b) + \epsilon$$

Additive Fusion

→ Back to multivariate case!

Additive fusion:

$$z = W_1 x_A + W_2 x_B$$

With unimodal encoders:

Additive fusion:

$$\mathbf{z} = f_A(\triangle) + f_B(\bigcirc)$$

It could be seen as an ensemble approach (late fusion)

Multiplicative Fusion

Simple multiplicative fusion:

$$z = x_A \odot x_B$$

Bilinear Fusion:

$$\mathbf{Z} = \mathbf{x}_A^\mathsf{T} \mathbf{x}_B$$

$$\operatorname{vec}(\mathbf{Z}) = \mathbf{x}_A \otimes \mathbf{x}_B$$

Kronecker product

If $\mathbf{A} \in \mathbb{R}^{m \times n}$, $\mathbf{B} \in \mathbb{R}^{p \times q}$, then the Kronecker product $\mathbf{A} \otimes \mathbf{B} \in \mathbb{R}^{pm \times qn}$:

$$\mathbf{A}\otimes\mathbf{B}=egin{bmatrix} a_{11}\mathbf{B} & \cdots & a_{1n}\mathbf{B} \ dots & \ddots & dots \ a_{m1}\mathbf{B} & \cdots & a_{mn}\mathbf{B} \end{bmatrix}$$

Multiplicative Fusion

Zadeh et al., Tensor Fusion Network for Multimodal Sentiment Analysis, EMNLP 2017

Low-rank Fusion

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Low-rank Fusion

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Low-rank Fusion with Trimodal Input

Tensor Fusion

Low-rank Fusion:

Liu et al., Efficient Low-rank Multimodal Fusion with Modality-Specific Factors, ACL 2018

Going Beyond Additive and Multiplicative Fusion

Additive interaction:

$$z = w_1 x_A + w_2 x_B$$

First-order polynomial

Additive and multiplicative interaction:

$$z = w_1 x_A + w_2 x_B + w_3 (x_A \times x_B)$$

Second-order polynomial

Trimodal fusion (e.g., tensor fusion):

$$z = w_1 x_A + w_2 x_B + w_3 x_C + w_4 (x_A \times x_C) + w_5 (x_A \times x_C) + w_6 (x_B \times x_C) + w_7 (x_A \times x_B \times x_C)$$

Unimodal terms
(first-order)

Bimodal terms (second-order)

Trimodal terms (third-order)

Can we add higher-order interaction terms?

For example: $+w_8(x_A^2 \times x_B^2 \times x_c^2)$

$$+w_9(x_A^3 \times x_B)$$

$$+w_{10}(x_B^3 \times x_c^3)$$

Gated Fusion

Arevalo et al., Gated Multimodal Units for information fusion, ICLR-workshop 2017

Gating Module (aka, attention module)

Task 1: Representation (表示)

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Sub-Challenge 1b: Representation Coordination

Definition: Learn multimodally-contextualized representations that are coordinated through their cross-modal interactions

Strong Coordination:

Partial Coordination:

Coordination Function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\triangle), f_B(\bigcirc))$$

with model parameters θ_{g} , $\theta_{f_{A}}$ and $\theta_{f_{R}}$

Examples of coordination function:

Cosine similarity:

$$g(\mathbf{z}_A, \mathbf{z}_B) = \frac{\mathbf{z}_A \cdot \mathbf{z}_B}{\|\mathbf{z}_A\| \|\mathbf{z}_B\|}$$

Strong coordination!

For normalized inputs (e.g., $z_A - \overline{z_A}$), equivalent to Pearson correlation coefficient

Coordination Function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\triangle), f_B(\bigcirc))$$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

Examples of coordination function:

2 Kernel similarity functions:

$$g(\mathbf{z}_A, \mathbf{z}_B) = k(\mathbf{z}_A, \mathbf{z}_B) \begin{cases} \cdot \text{ Linear} \\ \cdot \text{ Polynomial} \\ \cdot \text{ Exponential} \\ \cdot \text{ RBF} \end{cases}$$

Kernel Function

A kernel function: Acts as a similarity metric between data points

$$K(x_i, x_j) = \phi(x_i)^T \phi(x_j) = \langle \phi(x_i), \phi(x_j) \rangle$$
 $\Rightarrow \phi(x)$ can be high-dimensional space!

Not linearly separable in *x* space

Same data, but now linearly separable in $\phi(x)$ space

Radial Basis Function (RBF) Kernel: $K(x_i, x_j) = \exp\left(-\frac{1}{2\sigma^2} ||x_i - x_j||^2\right)$

Coordination Function

Learning with coordination function:

$$\mathcal{L} = g(f_A(\triangle), f_B(\bigcirc))$$

with model parameters θ_g , θ_{f_A} and θ_{f_B}

Examples of coordination function:

3 Canonical Correlation Analysis (CCA):

$$\underset{\boldsymbol{V},\boldsymbol{U},f_A,f_B}{\operatorname{argmax}} corr(\boldsymbol{z}_A,\boldsymbol{z}_B)$$

CCA includes multiple projections, all orthogonal with each others

Retrospect: Principal Component Analysis (PCA)

$$\arg\max \|\boldsymbol{u}^{\mathsf{T}}\boldsymbol{X}\|^2$$
 s.t. $\boldsymbol{u}^{\mathsf{T}}\boldsymbol{u}=1$

Correlation

$$ho_{X,Y} = \operatorname{corr}(X,Y) = rac{\operatorname{cov}(X,Y)}{\sigma_X \sigma_Y} = rac{\operatorname{E}[(X - \mu_X)(Y - \mu_Y)]}{\sigma_X \sigma_Y}$$

$$X,Y ext{ independent} \quad \Rightarrow \quad
ho_{X,Y} = 0 \quad (X,Y ext{ uncorrelated}) \
ho_{X,Y} = 0 \quad (X,Y ext{ uncorrelated}) \quad \Rightarrow \quad X,Y ext{ independent}$$

Correlation

1. 二次函数关系的例子

设随机变量 X 均匀分布在区间 [-1,1],定义 $Y=X^2$ 。虽然 X 和 Y 之间显然不是独立的,因为 Y 完全由 X 决定,但它们是 **不相关的**,因为协方差为零。

• 证明不相关性:

$$\operatorname{Cov}(X,Y) = \mathbb{E}[XY] - \mathbb{E}[X]\mathbb{E}[Y]$$

由于 $Y=X^2$, 我们可以计算:

$$\mathbb{E}[X] = 0$$
 (因为 X 是均匀分布的,对称性导致均值为 0)

$$\mathbb{E}[X^3] = 0$$
 (立方对称分布于 [-1, 1], 故期望为 0)

因此,Cov(X,Y)=0,它们不相关,但显然 X 和 Y 不是独立的。

https://chatgpt.com/

Correlated Projection

1 Learn two linear projections, one for each view, that are maximally correlated:

Two views *X*, *Y* where same instances have the same color

Correlated Projection

The first pair of canonical variables:

$$(\boldsymbol{u}_1, \boldsymbol{v}_1) = \arg\max \frac{\boldsymbol{u}^{\mathsf{T}} \boldsymbol{\Sigma}_{XY} \boldsymbol{v}}{\sqrt{\boldsymbol{u}^{\mathsf{T}} \boldsymbol{\Sigma}_{XX} \boldsymbol{u}} \sqrt{\boldsymbol{v}^{\mathsf{T}} \boldsymbol{\Sigma}_{YY} \boldsymbol{v}}}$$

Since this objective function is invariant to scaling, we can constraint the projections to have unit variance:

$$\boldsymbol{u}_1^{\mathsf{T}} \boldsymbol{\Sigma}_{XX} \boldsymbol{u}_1 = \boldsymbol{v}_1^{\mathsf{T}} \boldsymbol{\Sigma}_{YY} \boldsymbol{v}_1 = \mathbf{1}$$

Correlated Projection

The k-th pair of canonical variables:

$$(\boldsymbol{u}_k, \boldsymbol{v}_k) = \arg\max \frac{\boldsymbol{u}^{\top} \boldsymbol{\Sigma}_{XY} \boldsymbol{v}}{\sqrt{\boldsymbol{u}^{\top} \boldsymbol{\Sigma}_{XX} \boldsymbol{u}} \sqrt{\boldsymbol{v}^{\top} \boldsymbol{\Sigma}_{YY} \boldsymbol{v}}}$$

We want these multiple projection pairs to be orthogonal ("canonical") to each other:

$$\boldsymbol{u}^{\mathsf{T}}\boldsymbol{\Sigma}_{XX}\boldsymbol{u}_{i}=\boldsymbol{v}^{\mathsf{T}}\boldsymbol{\Sigma}_{YY}\boldsymbol{v}_{i}=\mathbf{0}, \forall j=1,\cdots,k-1$$

Deep Canonically Correlated Autoencoders (DCCAE)

Gated Coordination

Gated coordination:

$$\mathbf{z}_A = g_A(\mathbf{x}_A, \mathbf{x}_B) \cdot \mathbf{x}_A$$

$$\mathbf{z}_B = g_B(\mathbf{x}_A, \mathbf{x}_B) \cdot \mathbf{x}_B$$

Related to attention modules in transformers

Coordination with Contrastive Learning

Paired data:

(e.g., images and text descriptions)

Contrastive loss:

brings positive pairs closer and pushes negative pairs apart

Simple contrastive loss:

Similarity functions are often cosine similarity

Zero-Shot Image Classification

Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 (Citations: 9211-> 22407)

Pretrained Dataset (not open-sourved by openAI)

we constructed a new dataset of **400 million** (**image, text**) **pairs** collected form a variety of publicly available sources on the Internet. To attempt to cover as broad a set of visual concepts as possible, we search for (image, text) pairs as part of the construction process whose text includes one of a set of 500,000 queries. We approximately class balance the results by including up to 20,000 (image, text) pairs per query. The resulting dataset has a similar total word count as the WebText dataset used to train GPT-2. We refer to this dataset as **WIT** for **WebImageText**.

Encoders

	Learning	Embedding	Input	ResNet		Text Transformer		
Model	rate	dimension	resolution	blocks	width	layers	width	heads
RN50	5×10^{-4}	1024	224	(3, 4, 6, 3)	2048	12	512	8
RN101	5×10^{-4}	512	224	(3, 4, 23, 3)	2048	12	512	8
RN50x4	5×10^{-4}	640	288	(4, 6, 10, 6)	2560	12	640	10
RN50x16	4×10^{-4}	768	384	(6, 8, 18, 8)	3072	12	768	12
RN50x64	3.6×10^{-4}	1024	448	(3, 15, 36, 10)	4096	12	1024	16

Table 19. CLIP-ResNet hyperparameters

	Learning	Embedding	Input	Vision Transformer			Text Transformer		
Model	rate	dimension	resolution	layers	width	heads	layers	width	heads
ViT-B/32	5×10^{-4}	512	224	12	768	12	12	512	8
ViT-B/16	5×10^{-4}	512	224	12	768	12	12	512	8
ViT-L/14	4×10^{-4}	768	224	24	1024	16	12	768	12
ViT-L/14-336px	2×10^{-5}	768	336	24	1024	16	12	768	12

Table 20. CLIP-ViT hyperparameters

```
# image_encoder - ResNet or Vision Transformer
# text_encoder - CBOW or Text Transformer
# I[n, h, w, c] - minibatch of aligned images
# T[n, 1] - minibatch of aligned texts
# W_i[d_i, d_e] - learned proj of image to embed
# W_t[d_t, d_e] - learned proj of text to embed
# t
    - learned temperature parameter
# extract feature representations of each modality
I_f = image_encoder(I) \#[n, d_i]
T_f = text_encoder(T) \#[n, d_t]
# joint multimodal embedding [n, d_e]
I_e = 12_normalize(np.dot(I_f, W_i), axis=1)
T_e = 12_normalize(np.dot(T_f, W_t), axis=1)
# scaled pairwise cosine similarities [n, n]
logits = np.dot(I_e, T_e.T) * np.exp(t)
# symmetric loss function
labels = np.arange(n)
loss_i = cross_entropy_loss(logits, labels, axis=0)
loss_t = cross_entropy_loss(logits, labels, axis=1)
       = (loss_i + loss_t)/2
loss
```

Symmetric InfoNCE (Noise Contrastive Estimation) loss

$$\mathcal{L} = \frac{1}{2} \left(\mathcal{L}_{image} + \mathcal{L}_{text} \right)$$

Positive pair

$$\mathcal{L}_{\text{image}} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\sin(\mathbf{z}_{i,\text{image}}, \mathbf{z}_{i,\text{text}})}{\sum_{j=1}^{N} \sin(\mathbf{z}_{i,\text{image}}, \mathbf{z}_{j,\text{text}})}$$

Negative pairs

$$\mathcal{L}_{\text{text}} = -\frac{1}{N} \sum_{i=1}^{N} \log \frac{\sin \left(\mathbf{z}_{i,\text{image}}, \mathbf{z}_{i,\text{text}}\right)}{\sum_{j=1}^{N} \sin \left(\mathbf{z}_{j,\text{image}}, \mathbf{z}_{i,\text{text}}\right)}$$

Learning Transferable Visual Models From Natural Language Supervision, ICML 2021 (Citations: 9211-> 22407)

Homogeneous Coordination with Channel Exchanging

Homogeneous Multimodal Learning: The modalities to fuse are of the same shape; there is certain correspondence between their each element

Modality 1

Modality 2

Parameter-free, Self-adaptive

Task 1: Representation (表示)

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Fusion # modalities > # representations

Coordination # modalities = # representations

Sub-Challenge 1c: Representation Fission

Definition: learning a new set of representations that reflects multimodal internal structure such as data factorization or clustering

Modality-level fission:

Fine-grained fission:

Modality-Level Fission

Modality-Level Fission

How to learn factorized multimodal representations?

A Discriminative Approach – Factorized Multimodal Representations

A Generative-Discriminative Approach

$$\mathcal{L} = \mathcal{L}_1 + \mathcal{L}_2 + \mathcal{L}_3$$

L₁: discriminative

L₂: generative

Separate priors for z_A , z_B and z_Y

Modality-Level Fission –Information Theory

Information and Entropy – Information Theory

How much information in the modality?

Information Theory (Shannon, 1948)

Main intuition: "Information value" of a communicated message x depends on how surprising its content is

x: "12, 34, 45, 62 was not a winning combination"

x: "11, 28, 38, 58 was a winning combination"

Low chances... So, higher information

Information content I(x)

$$I(x) \sim \frac{1}{p(x)}$$
 | But how to scale?

$$I(x) = \log\left(\frac{1}{p(x)}\right) = -\log(p(x))$$

Information and Entropy – Information Theory

Information entropy (in bits) is the log-base-2 of the number of possible outcomes. With two coins there are four outcomes HH-HT-TH-TT, and the entropy is two bits.

Information and Entropy – Information Theory

How much information in the modality?

Information Theory (Shannon, 1948)

Information content $I(X) = -\log(p(X))$

For discrete alphabet \mathcal{X} , then X is discrete random variable

Entropy: weighted average of all possible outcomes from \mathcal{X}

$$H(X) = \mathbb{E}[I(X)] = \mathbb{E}[-\log(p(X))] = -\sum_{x \in \mathcal{X}} p(X)\log(p(X))$$

Entropy can also be defined for continuous random variables

Information and Entropy

Entropy with Two Modalities

Entropy with Two Modalities

Conditional entropy H(Y|X)

$$H(Y|X) = -\mathbb{E}_{X,Y}[\log p(y|x)]$$

$$= -\mathbb{E}_{X,Y} \left[\log \frac{p(x,y)}{p(x)} \right]$$

Entropy with Two Modalities

Mutual information I(X; Y)

$$I(X;Y) = H(X) - H(X|Y)$$

$$= \mathbb{E}_{X,Y} \left[\log \frac{1}{P_X(x)} + \log \frac{P_{XY}(x,y)}{P_Y(y)} \right]$$

$$I(X;Y) = \mathbb{E}_{X,Y} \left[\log \frac{P_{XY}(x,y)}{P_X(x)P_Y(y)} \right]$$

using KL-divergence $\longleftarrow I(X;Y) = D_{KL}(P_{XY}(x,y) \parallel P_X(x)P_Y(y))$

Link with Self-Supervised Learning

Information theory gives us a path towards disentangled representation learning

Some facts about information theory

1. Properties of mutual information:

$$I(X;Y) \ge 0, I(X;Y) = I(Y;X)$$

2. Subadditivity:

$$H(X) + H(Y) = H(X,Y) + I(X;Y) \ge H(X,Y)$$

 $H(X) = H(X|Y) + I(X;Y) \ge H(X|Y)$

3. The entropy or the amount of information revealed by evaluating X and Y simultaneously is equal to: first evaluating the value of Y, then revealing the value of X given that you know the value of Y.

$$H(X,Y) = H(X|Y) + H(Y) = H(Y|X) + H(X)$$

But, do we have $H(X|Y) \ge 0$???

Fine-Grained Fission

How to automatically discover these internal clusters, factors?

Fine-Grained Fission – A Clustering Approach

Unimodal Encoders

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 2019

Fine-Grained Fission – A Clustering Approach

Discovers multiple audio-visual correspondences

Unimodal Encoders

Multimodal Fission

Hu et al., Deep Multimodal Clustering for Unsupervised Audiovisual Learning, CVPR 20

shared spaces (clusters)

Task 1: Representation (表示)

Definition: Learning representations that reflect cross-modal interactions between individual elements, across different modalities

Sub-challenges:

Fusion # modalities > # representations

Coordination

modalities = # representations

Fission

modalities < # representations