

《多模态机器学习》

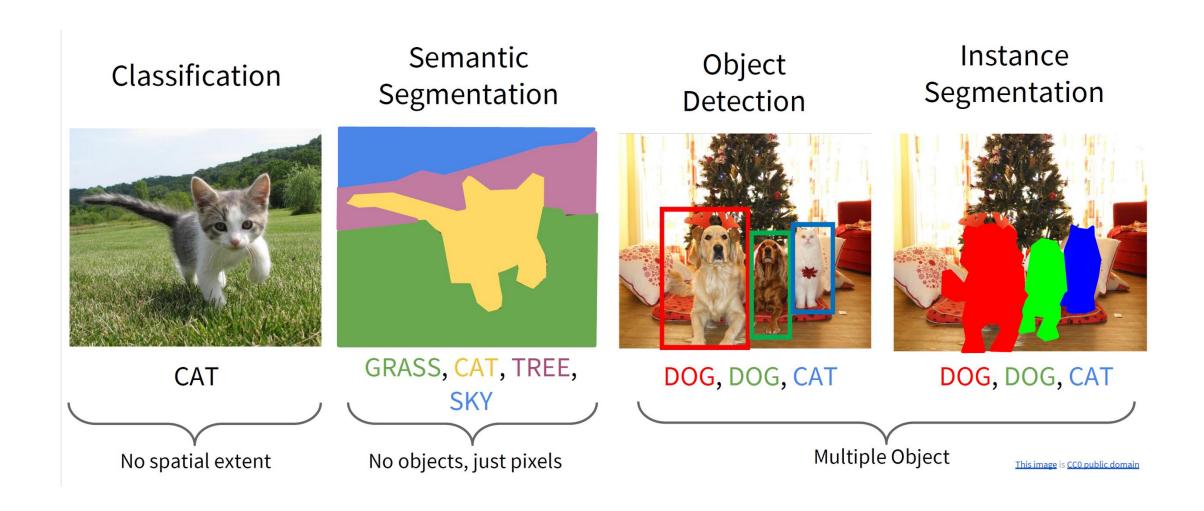
第八章 多模态自监督学习

黄文炳 中国人民大学高瓴人工智能学院

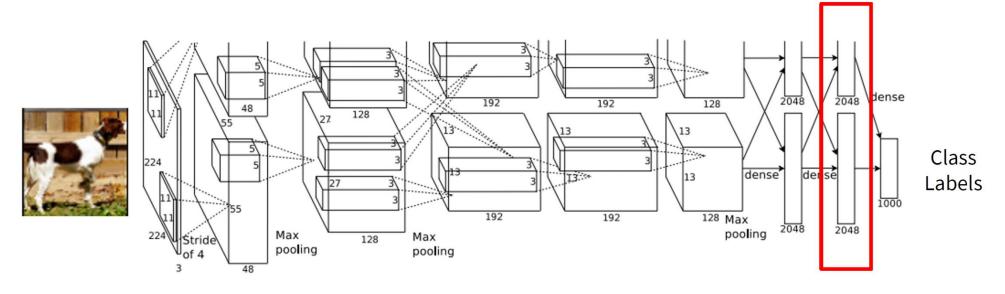
hwenbing@126.com

2024年秋季

Lots of Computer Vision Tasks



Learned Representations



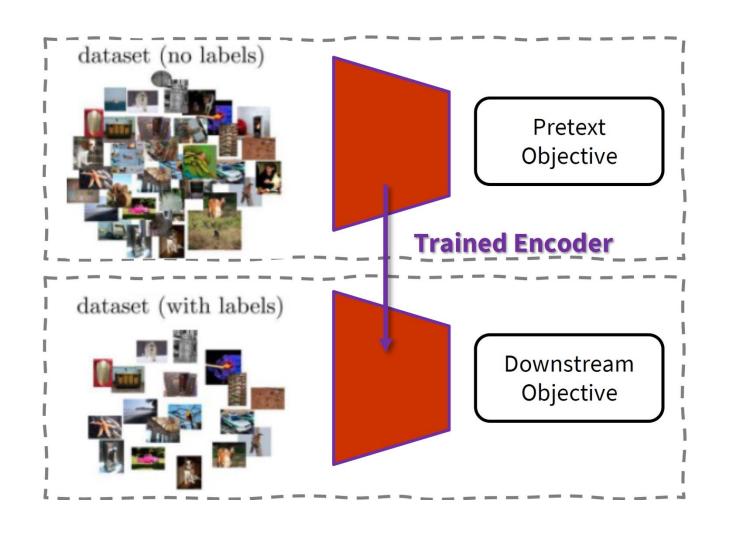
What is the problem with large-scale training?

- We need a lot of labeled data

Is there a way we can train neural networks without the need for huge manually labeled datasets?

Krizhevsky et al, "ImageNet Classification with Deep Convolutional Neural Networks", NIPS 2012. Figures reproduced with permission.

Self-Supervised Learning



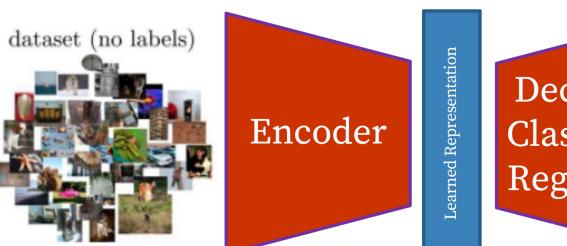
Pretext Task

- Define a task based on the data itself
- No manual annotation
- Could be considered an **unsupervised** task;
- but we learn with supervised learning objectives, e.g., classification or regression.

Downstream Task

- The application you care about
- You do not have large datasets
- The dataset is labeled

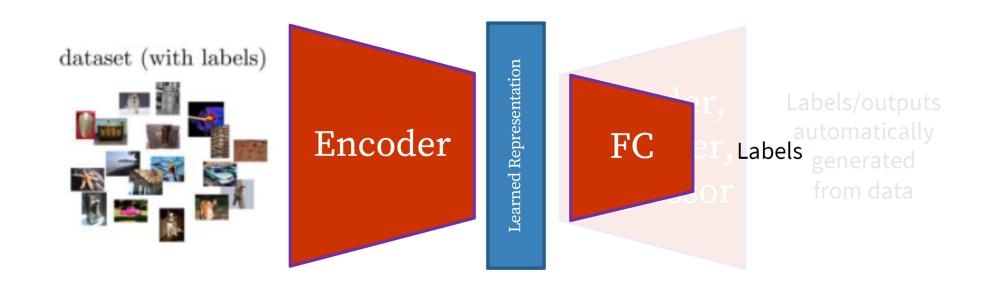
Self-Supervised Learning – Pretext Task



Decoder, Classifier, generated Regressor from data

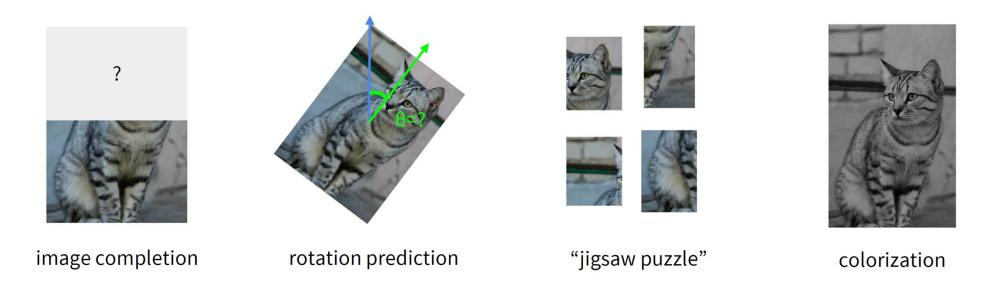
Labels/outputs automatically

Self-Supervised Learning – Downstream Task



Self-supervised pretext tasks

Example: learn to predict image transformations / complete corrupted images



- 1. Solving the pretext tasks allow the model to learn good features.
- 2. We can automatically generate labels for the pretext tasks.

How to evaluate a self-supervised learning method?

Pretext Task Performance

Measure how well the model performs on the task it was trained on without labels.

Representation Quality

- Evaluate the quality of the learned representations
 - *Linear Evaluation Protocol:* Train a linear classifier on the leaerned representations;
 - *Clustering:* Measure clustering performance;
 - *t-SNE:* Visualize the representations to assess their separability.)

Robustness and Generalization

Test how well the model generalizes to different datasets and is robust to variations.

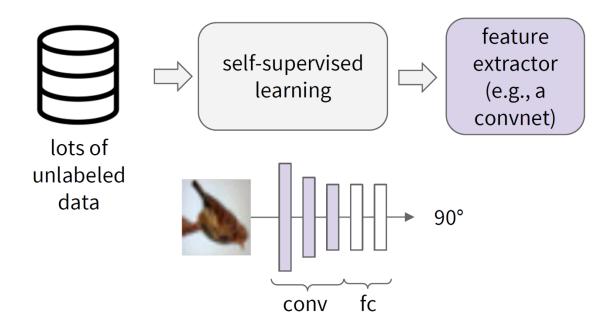
Computational Efficiency

Assess the efficiency of the method in terms of training time and resource requirements.

Transfer Learning and Downstream Task Performance

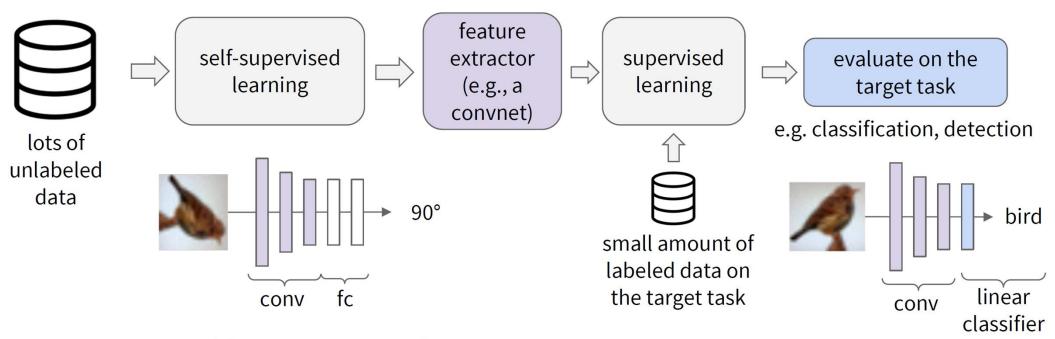
 Assess the utility of the learned representations by transferring them to a downstream supervised task.

How to evaluate a self-supervised learning method?



1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations

How to evaluate a self-supervised learning method?

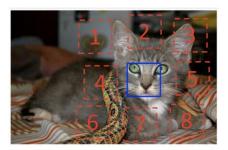


- 1. Learn good feature extractors from self-supervised pretext tasks, e.g., predicting image rotations
- 2. Attach a shallow network on the feature extractor; train the shallow network on the target task with small amount of labeled data

Broader picture

Today's lecture

computer vision



Doersch et al., 2015

robot / reinforcement learning

Dense Object Net (Florence and Manuelli et al., 2018)

language modeling

GPT-4 Technical Report

OpenAI*

Abstract

We report the development of GPT-4, a large-scale, multimodal model which can accept image and text inputs and produce text outputs. While less capable than humans in many real-world scenarios, GPT-4 exhibits human-level performance on various professional and academic benchmarks, including passing a simulated bar exam with a score around the top 10% of test takers. GPT-4 is a Transformer-based model pre-trained to predict the next token in a document. The post-training alignment process results in improved performance on measures of factuality and adherence to desired behavior. A core component of this project was developing infrastructure and optimization methods that behave predictably across a wide range of scales. This allowed us to accurately predict some aspects of GPT-4's performance based on models trained with no more than 1/1,000th the compute of GPT-4.

GPT-4 (OpenAl 2023)

speech synthesis



Wavenet (van den Oord et al., 2016)

• • •

Today's Agenda

Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Today's Agenda

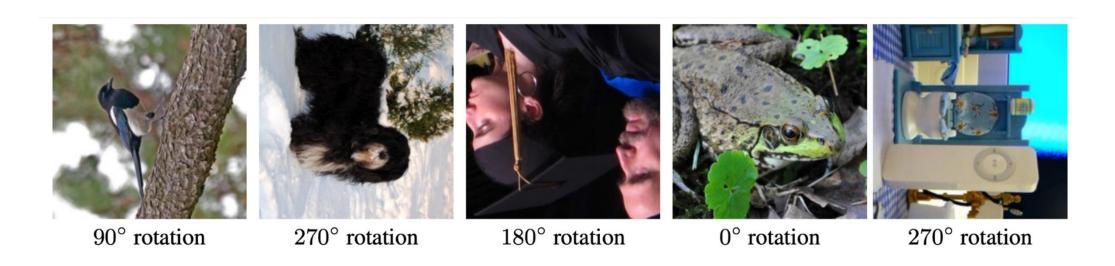
Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

Contrastive representation learning

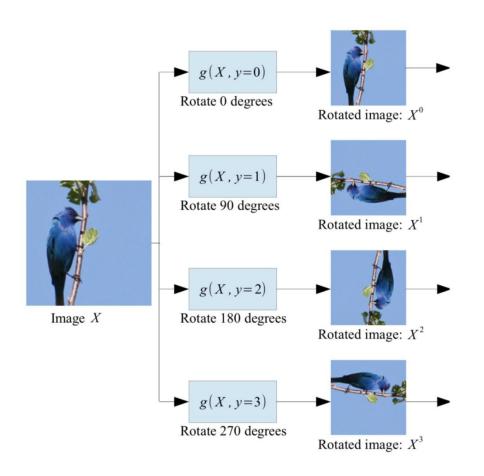
- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Pretext task: predict rotations



Hypothesis: a model could recognize the correct rotation of an object only if it has the "visual commonsense" of what the object should look like unperturbed.

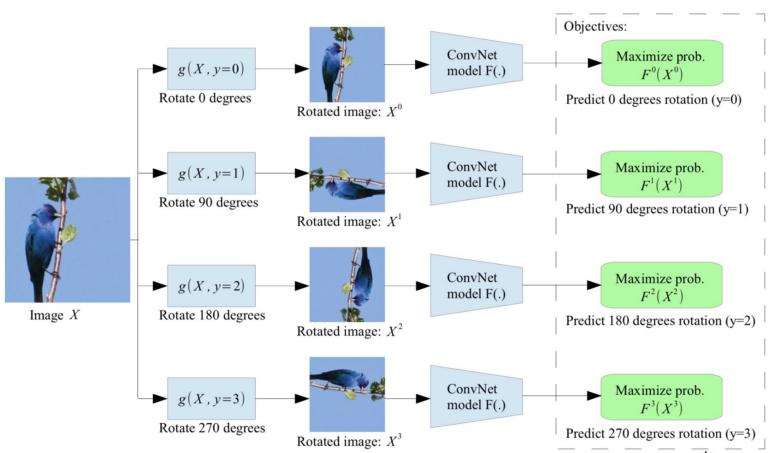
Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

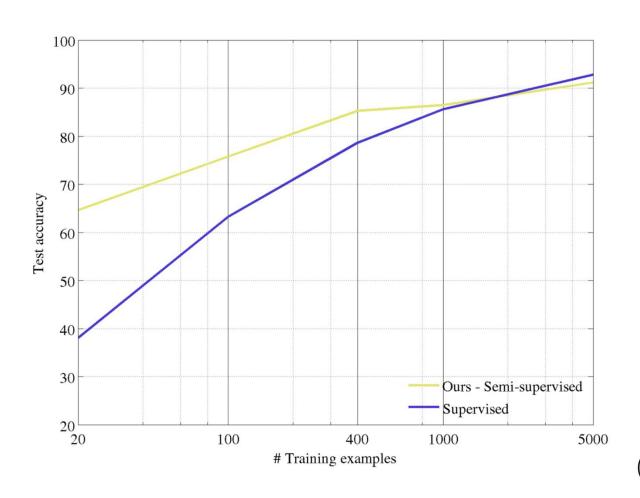
Pretext task: predict rotations



Self-supervised learning by rotating the entire input images.

The model learns to predict which rotation is applied (4-way classification)

Evaluation on semi-supervised learning



Self-supervised learning on CIFAR10 (entire training set).

Freeze conv1 + conv2 Learn conv3 + linear layers with subset of labeled CIFAR10 data (classification).

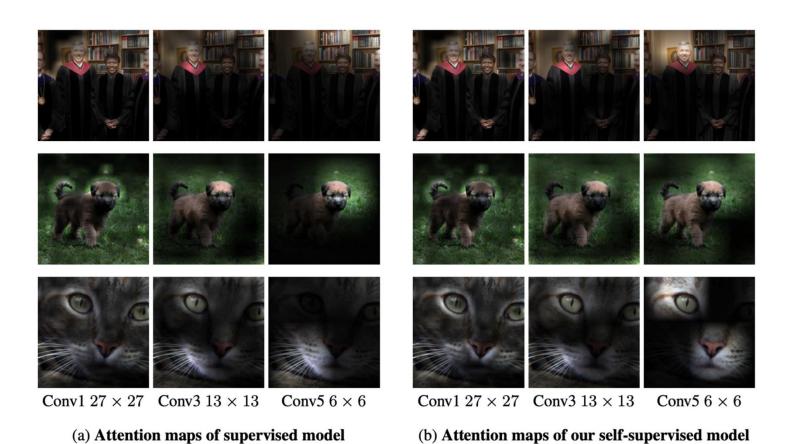
Transfer learned features to supervised learning

	Classification (%mAP)		Detection (%mAP)	Segmentation (%mIoU)		
Trained layers	fc6-8	all	all	all	Pretrained with full ImageNet	
ImageNet labels	78.9	79.9	56.8	48.0	supervision	
Random Random rescaled Krähenbühl et al. (2015)	39.2	53.3 56.6	43.4 45.6	19.8 32.6	— No pretraining	
Egomotion (Agrawal et al., 2015) Context Encoders (Pathak et al., 2016b)	31.0 34.6	54.2 56.5	43.9 44.5	29.7		
Tracking (Wang & Gupta, 2015) Context (Doersch et al., 2015)	55.6 55.1	63.1 65.3	47.4 51.1		Self-supervised learning on	
Colorization (Zhang et al., 2016a)	61.5	65.6	46.9	35.6	ImageNet (entire training	
BIGAN (Donahue et al., 2016) Jigsaw Puzzles (Noroozi & Favaro, 2016)	52.3	60.1 67.6	46.9 53.2	34.9 37.6	set) with AlexNet.	
NAT (Bojanowski & Joulin, 2017)	56.7	65.3	49.4	260		
Split-Brain (Zhang et al., 2016b) ColorProxy (Larsson et al., 2017)	63.0	67.1 65.9	46.7	36.0 38.4	Finetune on labeled data	
Counting (Noroozi et al., 2017)	-	67.7	51.4	36.6	from Pascal VOC 2007.	
(Ours) RotNet	70.87	72.97	54.4	39.1		

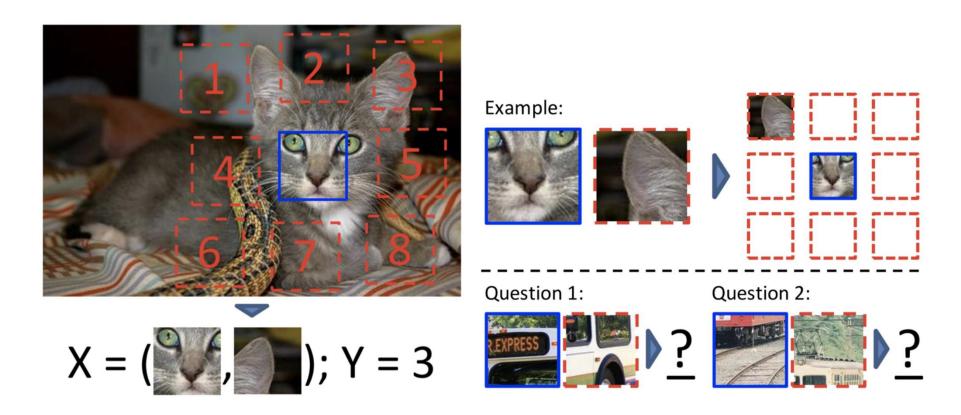
Self-supervised learning with rotation prediction

source: Gidaris et al. 2018

Visualize learned visual attentions

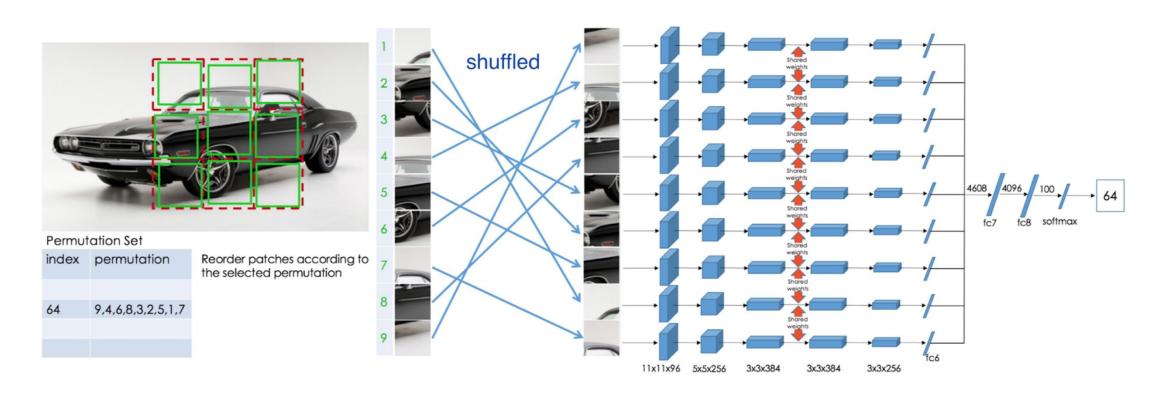


Pretext task: predict relative patch locations



(Image source: <u>Doersch et al., 2015</u>)

Pretext task: solving "jigsaw puzzles"



(Image source: Noroozi & Favaro, 2016)

Pretext task: solving "jigsaw puzzles"

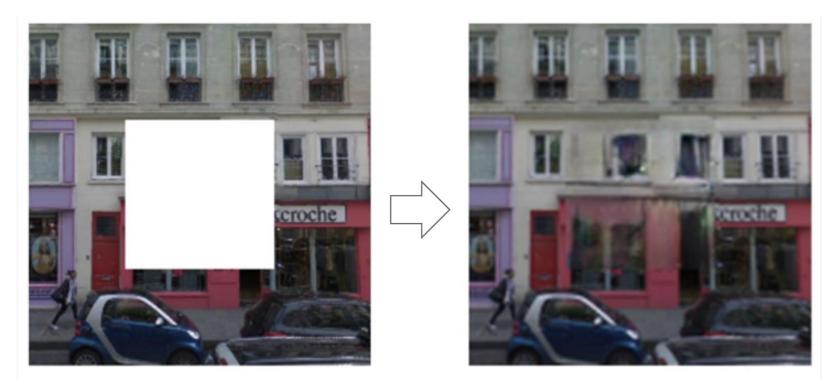
Transfer learned features to supervised learning

Table 1: Results on PASCAL VOC 2007 Detection and Classification. The results of the other methods are taken from Pathak et al. [30].

Method	d Pretraining time		Classification	Detection	Segmentation
Krizhevsky et al. [25]	3 days	1000 class labels	$\boldsymbol{78.2\%}$	$\boldsymbol{56.8\%}$	$\boldsymbol{48.0\%}$
Wang and Gupta[39]	1 week	motion	58.4%	44.0%	-
Doersch et al. [10]	4 weeks	context	55.3%	46.6%	-
Pathak et al. [30]	14 hours	context	56.5%	44.5%	29.7%
Ours	$2.5 \mathrm{days}$	context	67.6%	53.2%	37.6%

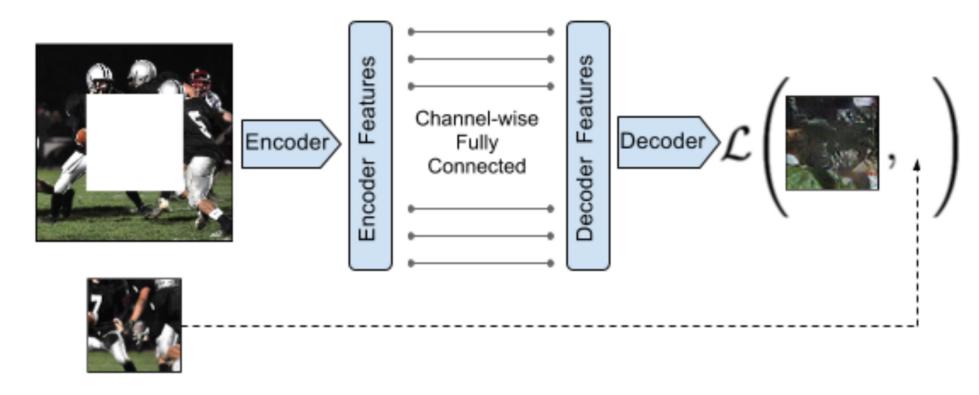
"Ours" is feature learned from solving image Jigsaw puzzles (Noroozi & Favaro, 2016). Doersch et al. is the method with relative patch location

(source: Noroozi & Favaro, 2016)



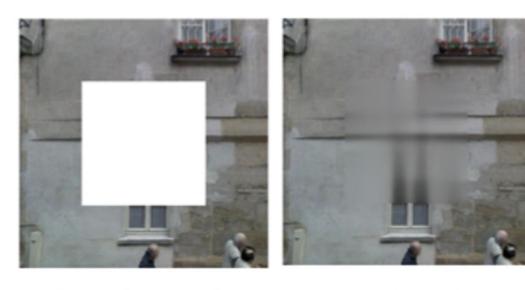
Context Encoders: Feature Learning by Inpainting (Pathak et al., 2016)

Learning to inpaint by reconstruction



Learning to reconstruct the missing pixels

Inpainting evaluation



Input (context)

reconstruction

Loss = reconstruction + adversarial learning

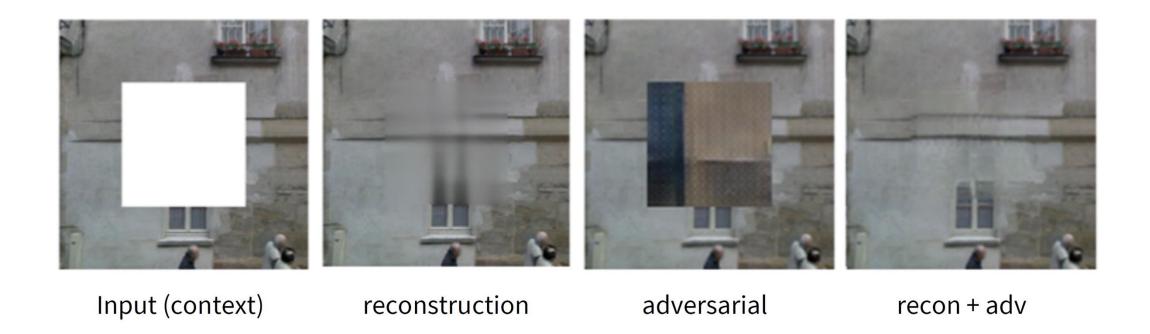
$$L(x) = L_{recon}(x) + L_{adv}(x)$$

$$L_{recon}(x) = ||M*(x - F_{ heta}((1 - M)*x))||_2^2$$

$$L_{adv} = \max_D \mathbb{E}[\log(D(x))] + \log(1 - D(F((1-M)*x)))]$$

Adversarial loss between "real" images and inpainted images

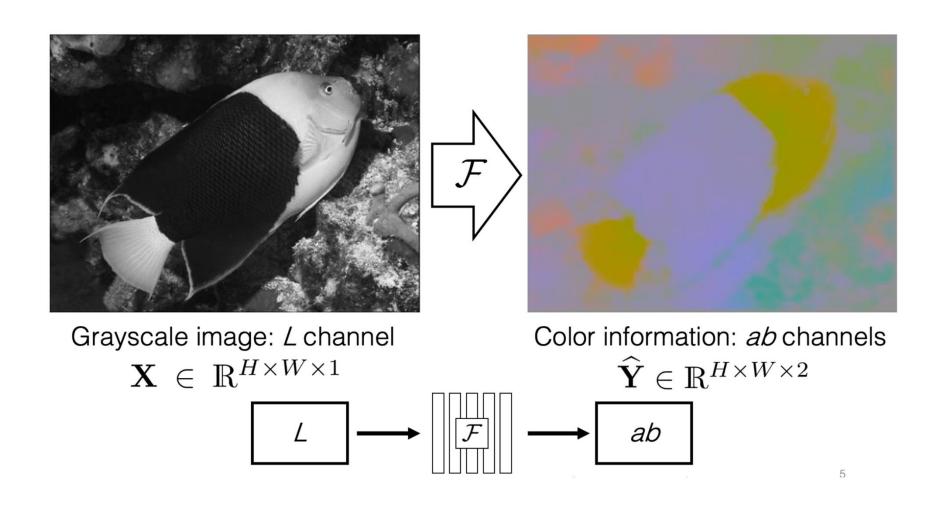
Inpainting evaluation



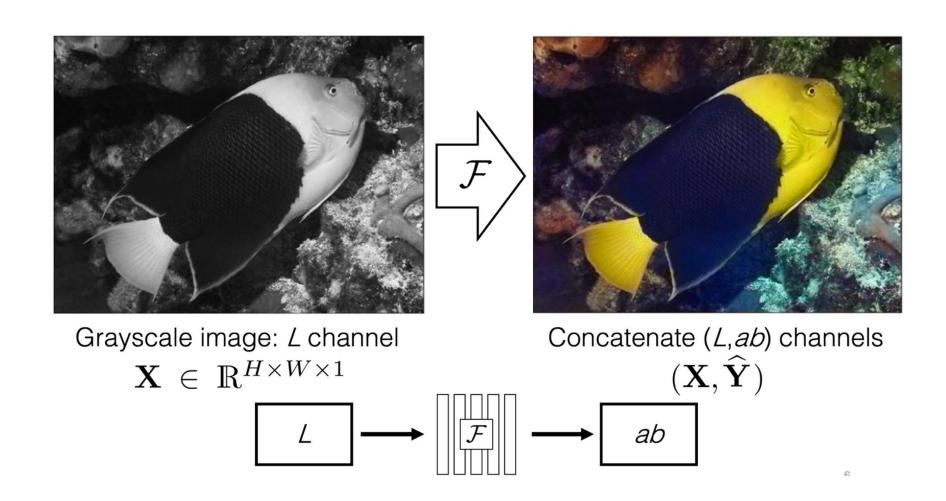
Transfer learned features to supervised learning

Pretraining Method	Supervision	Pretraining time	Classification	Detection	Segmentation
ImageNet [26]	1000 class labels	3 days	78.2%	56.8%	48.0%
Random Gaussian	initialization	< 1 minute	53.3%	43.4%	19.8%
Autoencoder	-	14 hours	53.8%	41.9%	25.2%
Agrawal et al. [1]	egomotion	10 hours	52.9%	41.8%	-
Wang <i>et al</i> . [39]	motion	1 week	58.7%	47.4%	-
Doersch et al. [7]	relative context	4 weeks	55.3%	46.6%	-
Ours	context	14 hours	56.5%	44.5%	30.0%

Self-supervised learning on ImageNet training set, transfer to classification (Pascal VOC 2007), detection (Pascal VOC 2007), and semantic segmentation (Pascal VOC 2012)

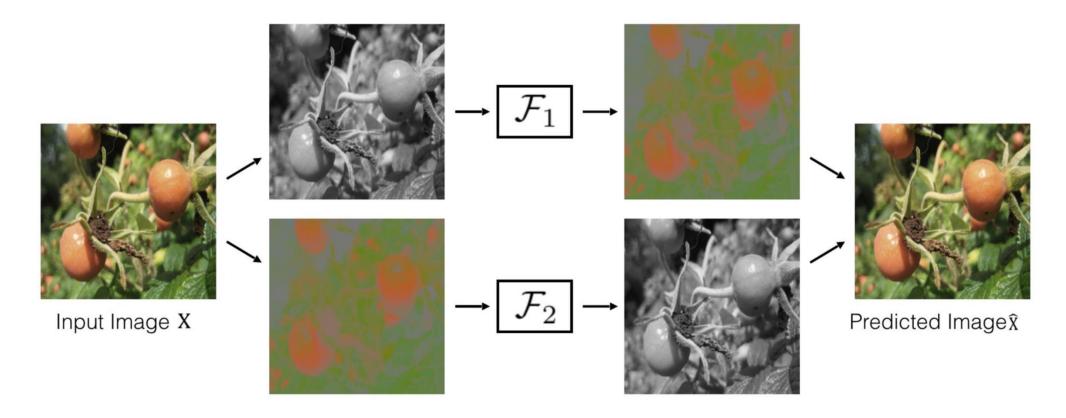


https://arxiv.org/abs/1603.08511



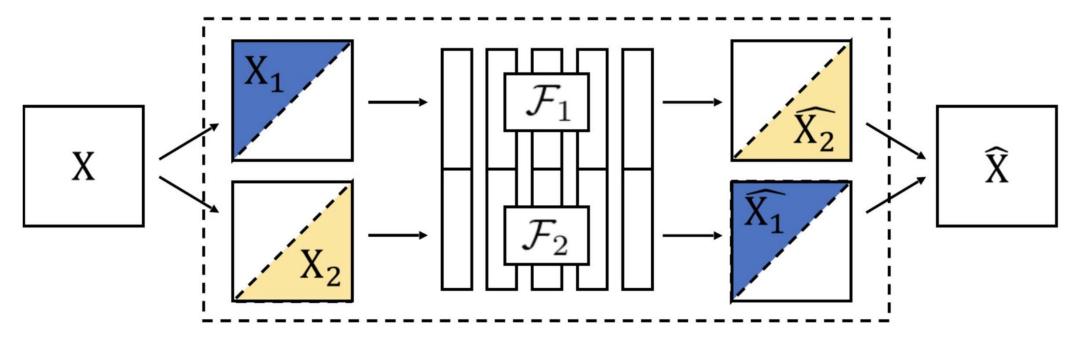
https://arxiv.org/abs/1603.08511

Split-brain Autoencoder



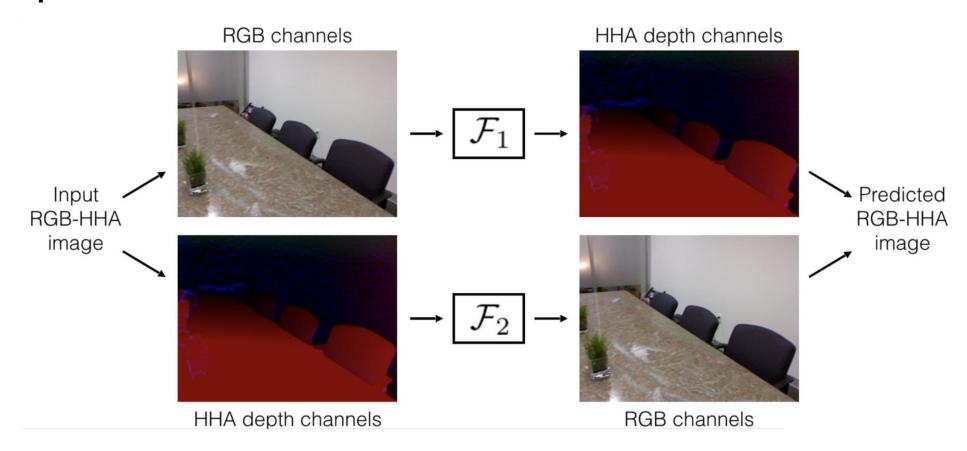
Split-brain Autoencoder

Idea: cross-channel predictions

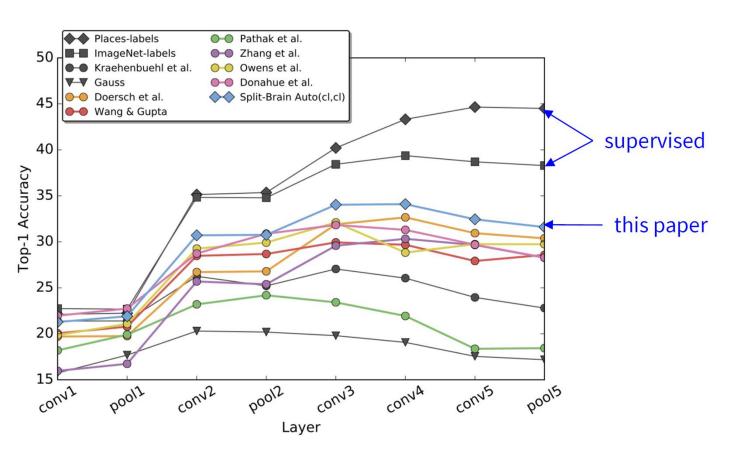


Split-Brain Autoencoder

Split-brain Autoencoder



Transfer learned features to supervised learning



Self-supervised learning on ImageNet (entire training set).

Use concatenated features from F₁ and F₂

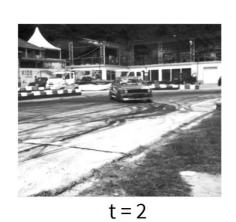
Labeled data is from the Places (Zhou 2016).

Source: Zhang et al., 2017

Idea: model the temporal coherence of colors in videos

reference frame

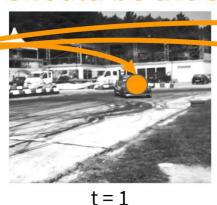
how should I color these frames?

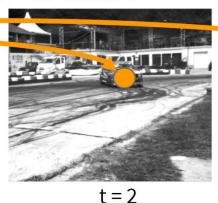


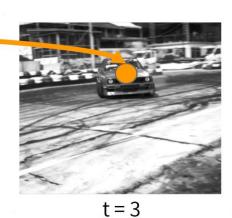
Idea: model the temporal coherence of colors in videos

reference frame

how should I color these frames?



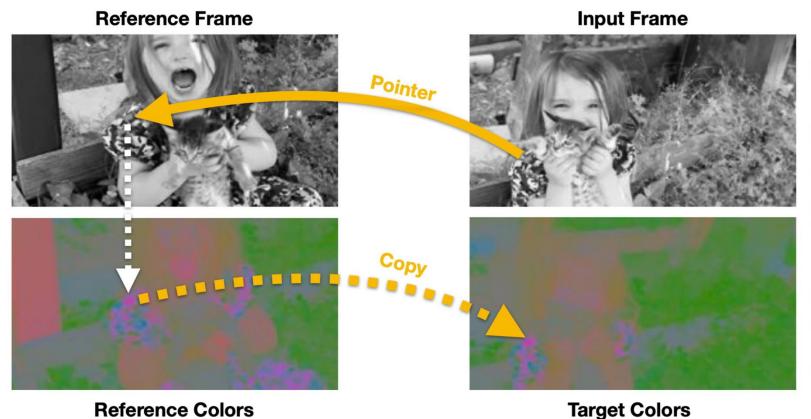




t = 0

Hypothesis: learning to color video frames should allow model to learn to track regions or objects without labels!

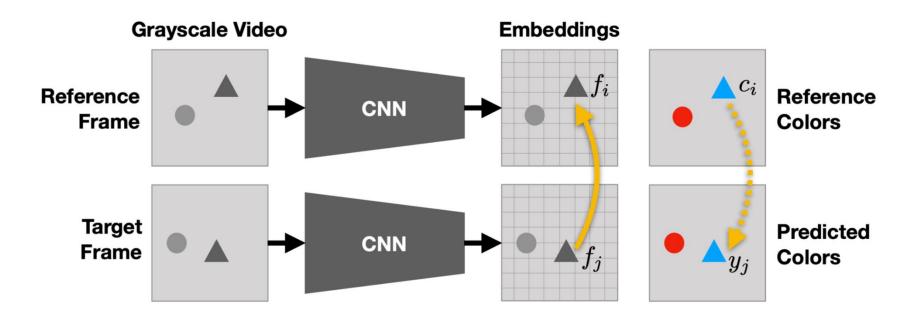
Learning to color videos



Learning objective:

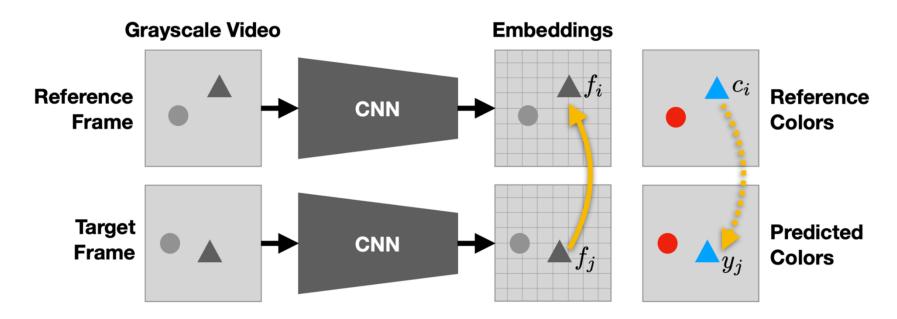
Establish mappings between reference and target frames in a learned feature space.

Use the mapping as "pointers" to copy the correct color (LAB).



attention map on the reference frame

$$A_{ij} = \frac{\exp(f_i^T f_j)}{\sum_k \exp(f_k^T f_j)}$$

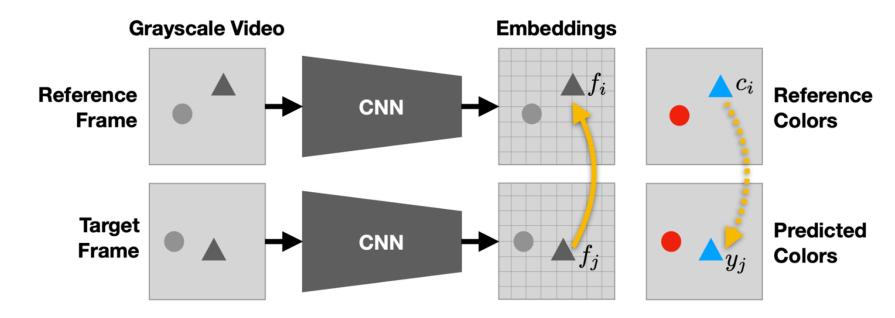


attention map on the reference frame

$$A_{ij} = \frac{\exp(f_i^T f_j)}{\sum_k \exp(f_k^T f_j)} \qquad y_j = \sum_i A_{ij} c_i$$

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$



attention map on the reference frame

$$A_{ij} = \frac{\exp(f_i^T f_j)}{\sum_k \exp(f_k^T f_j)}$$

predicted color = weighted sum of the reference color

$$y_j = \sum_i A_{ij} c_i$$

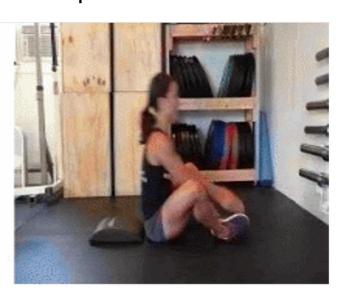
loss between predicted color and ground truth color

$$\min_{ heta} \sum_{j} \mathcal{L}\left(y_{j}, c_{j}
ight)$$

Colorizing videos (qualitative)

reference frame

predicted color



Source: Google AI blog post

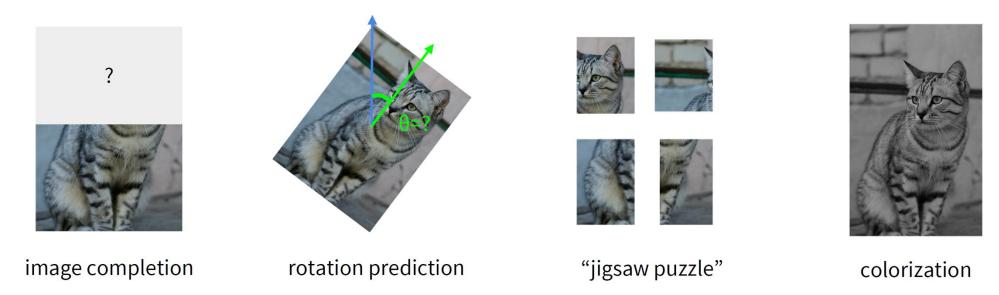
Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We often do not care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).

Summary: pretext tasks from image transformations

- Pretext tasks focus on "visual common sense", e.g., predict rotations, inpainting, rearrangement, and colorization.
- The models are forced learn good features about natural images, e.g., semantic representation of an object category, in order to solve the pretext tasks.
- We often do not care about the performance of these pretext tasks, but rather how useful the learned features are for downstream tasks (classification, detection, segmentation).
- Problems: 1) coming up with individual pretext tasks is tedious, and 2) the learned representations may not be general.

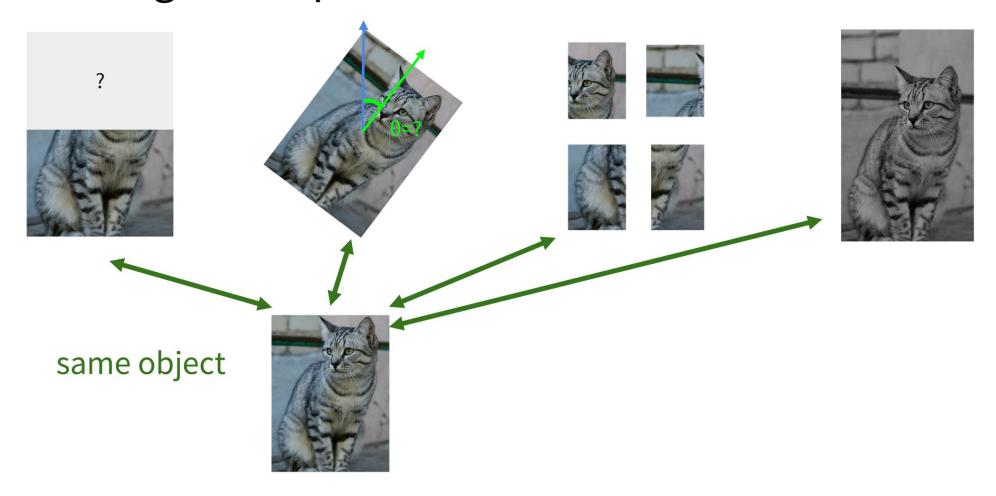
Pretext tasks from image transformations



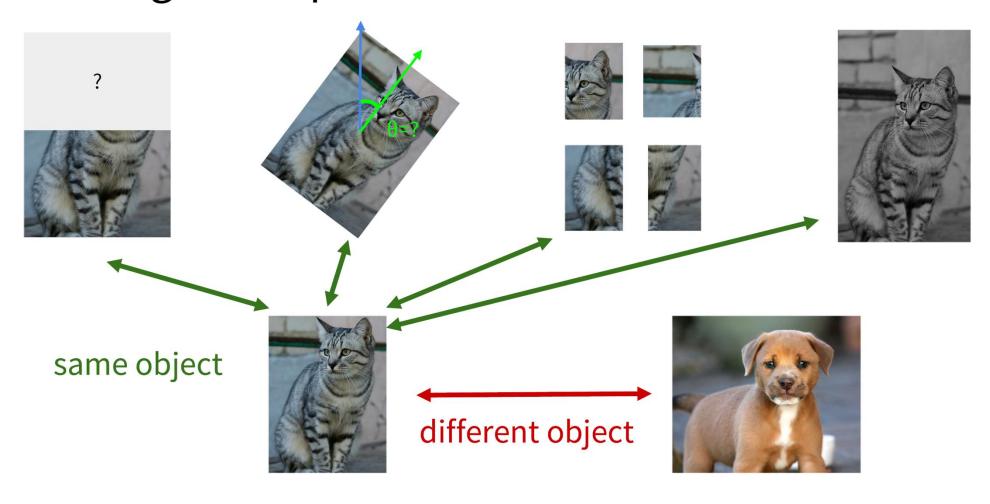
Learned representations may be tied to a specific pretext task!

Can we come up with a more general pretext task?

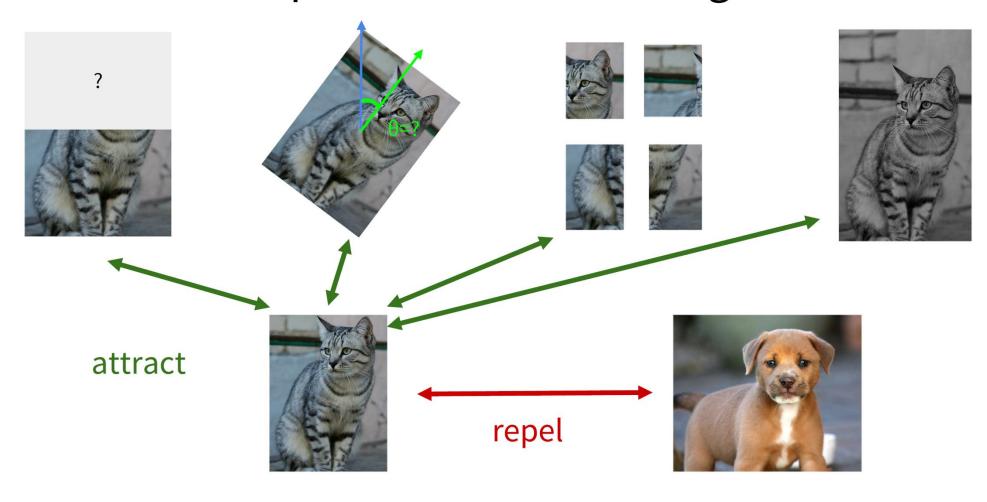
A more general pretext task?



A more general pretext task?



Contrastive Representation Learning



Today's Agenda

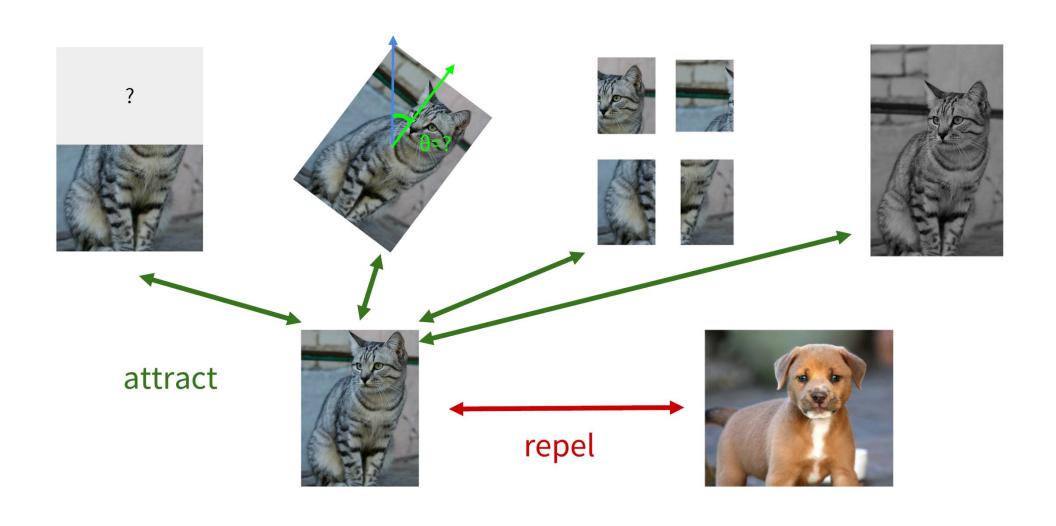
Pretext tasks from image transformations

- Rotation, inpainting, rearrangement, coloring

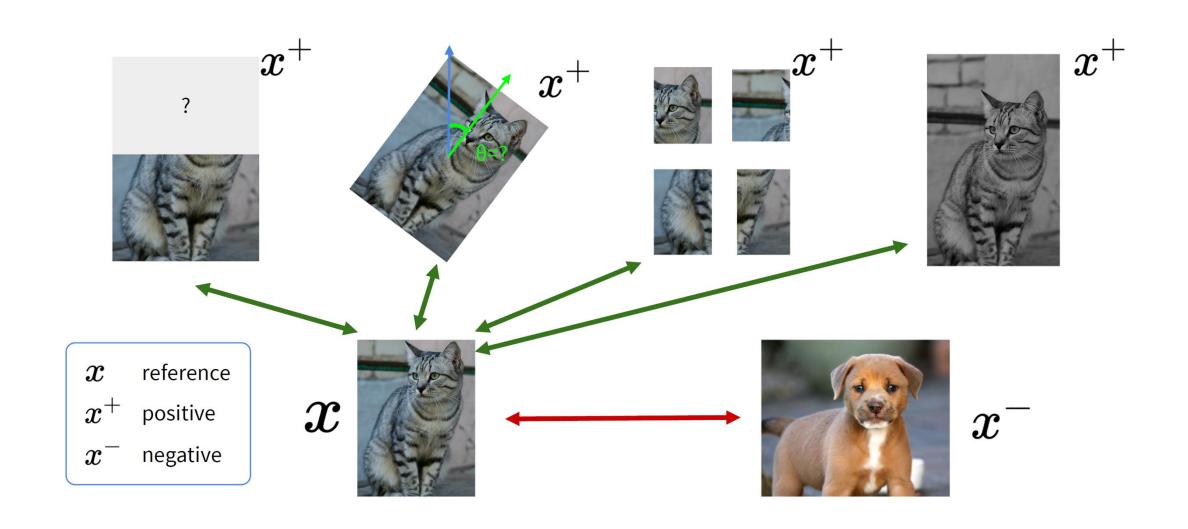
Contrastive representation learning

- Intuition and formulation
- Instance contrastive learning: SimCLR and MOCO
- Sequence contrastive learning: CPC

Contrastive Representation Learning



Contrastive Representation Learning



What we want:

$$\operatorname{score}(f(x),f(x^+)) >> \operatorname{score}(f(x),f(x^-))$$

x: reference sample; x⁺ positive sample; x⁻ negative sample

Given a chosen score function, we aim to learn an encoder function f that yields high score for positive pairs (x, x^+) and low scores for negative pairs (x, x^-) .

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Loss function given 1 positive sample and N - 1 negative samples:

• • •

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-)))} \right]$$
 score for the positive score for the N-1 negative pairs

This seems familiar ...

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$
 score for the positive score for the N-1 negative pairs

This seems familiar ...

Cross entropy loss for a N-way softmax classifier!

I.e., learn to find the positive sample from the N samples

Loss function given 1 positive sample and N - 1 negative samples:

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A lower bound on the mutual information between f(x) and $f(x^+)$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

The larger the negative sample size (N), the tighter the bound

Detailed derivation: Poole et al., 2019

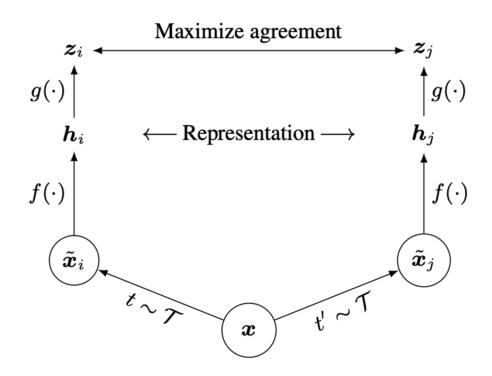
Cosine similarity as the score function:

$$s(u,v)=rac{u^Tv}{||u||||v||}$$

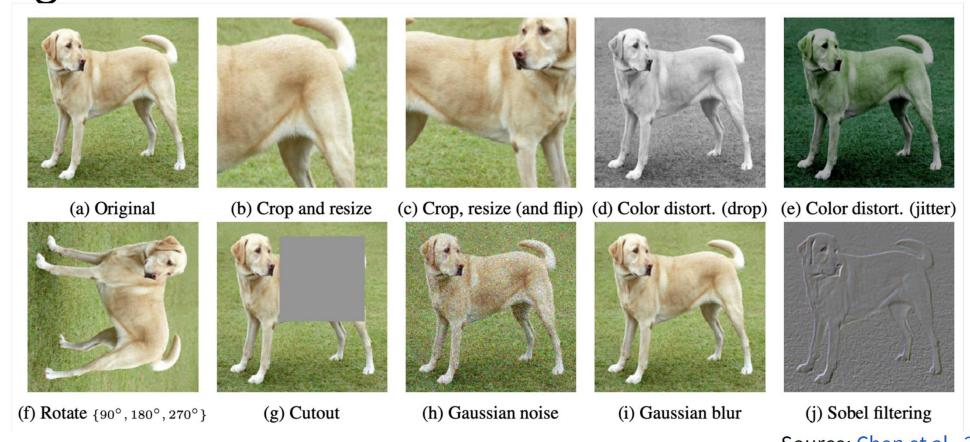
Use a projection network $g(\cdot)$ to project features to a space where contrastive learning is applied

Generate positive samples through data augmentation:

random cropping, random color distortion, and random blur.



SimCLR: generating positive samples from data augmentation



SimCLR

Generate a positive pair by sampling data augmentation functions

Algorithm 1 SimCLR's main learning algorithm.

input: batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do

for all $k \in \{1, \dots, N\}$ do

draw two augmentation functions $t \sim T$, $t' \sim T$

the first augmentation

the second augmentation

end for

for all
$$i \in \{1, ..., 2N\}$$
 and $j \in \{1, ..., 2N\}$ do $s_{i,j} = \mathbf{z}_i^{\top} \mathbf{z}_j / (\|\mathbf{z}_i\| \|\mathbf{z}_j\|)$ # pairwise similarity end for

define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/\tau)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/\tau)}$

$$\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1, 2k) + \ell(2k, 2k-1) \right]$$

update networks f and q to minimize \mathcal{L}

end for

return encoder network $f(\cdot)$, and throw away $g(\cdot)$

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

SimCLR

Generate a positive pair by sampling data augmentation functions **Algorithm 1** SimCLR's main learning algorithm.

input: batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do

for all $k \in \{1, \ldots, N\}$ do

draw two augmentation functions $t \sim T$, $t' \sim T$

the first augmentation

$$egin{aligned} egin{aligned} ar{oldsymbol{x}}_{2k-1} &= t(oldsymbol{x}_k) \ oldsymbol{h}_{2k-1} &= f(oldsymbol{x}_{2k-1}) & ext{\# representation} \ oldsymbol{z}_{2k-1} &= g(oldsymbol{h}_{2k-1}) & ext{\# projection} \end{aligned}$$

the second augmentation

$$ilde{m{x}}_{2k} = t'(m{x}_k)$$

$$oldsymbol{h}_{2k} = f(ilde{oldsymbol{x}}_{2k})$$
 # representation $oldsymbol{z}_{2k} = g(oldsymbol{h}_{2k})$ # projection

end for

for all
$$i \in \{1, \dots, 2N\}$$
 and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = \boldsymbol{z}_i^{\top} \boldsymbol{z}_j / (\|\boldsymbol{z}_i\| \|\boldsymbol{z}_j\|)$ # pairwise similarity

end for

define
$$\ell(i,j)$$
 as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/ au)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/ au)}$

$$\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$$

update networks f and g to minimize \mathcal{L}

end for

return encoder network $f(\cdot)$, and throw away $g(\cdot)$

*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

InfoNCE loss:
Use all non-positive samples in the batch as x⁻

SimCLR

Generate a positive pair by sampling data augmentation functions

Iterate through and use each of the 2N sample as reference, compute average loss

Algorithm 1 SimCLR's main learning algorithm.

input: batch size N, constant τ , structure of f, g, \mathcal{T} . for sampled minibatch $\{x_k\}_{k=1}^N$ do for all $k \in \{1, \dots, N\}$ do

draw two augmentation functions $t \sim T$, $t' \sim T$

the first augmentation

 $egin{aligned} egin{aligned} ar{oldsymbol{x}}_{2k-1} &= t(oldsymbol{x}_k) \ oldsymbol{h}_{2k-1} &= f(oldsymbol{x}_{2k-1}) \ oldsymbol{z}_{2k-1} &= g(oldsymbol{h}_{2k-1}) \end{aligned}$ # representation # projection

the second augmentation

$$egin{aligned} ilde{m{x}}_{2k} &= t'(m{x}_k) \ m{h}_{2k} &= f(ilde{m{x}}_{2k}) \ m{z}_{2k} &= g(m{h}_{2k}) \end{aligned}$$
 # representation # projection

end for

for all $i \in \{1, \dots, 2N\}$ and $j \in \{1, \dots, 2N\}$ do $s_{i,j} = \boldsymbol{z}_i^{\top} \boldsymbol{z}_j / (\|\boldsymbol{z}_i\| \|\boldsymbol{z}_j\|)$ # pairwise similarity

end for

define $\ell(i,j)$ as $\ell(i,j) = -\log \frac{\exp(s_{i,j}/ au)}{\sum_{k=1}^{2N} \mathbb{1}_{[k \neq i]} \exp(s_{i,k}/ au)}$

 $\mathcal{L} = \frac{1}{2N} \sum_{k=1}^{N} \left[\ell(2k-1,2k) + \ell(2k,2k-1) \right]$ update networks f and g to minimize \mathcal{L}

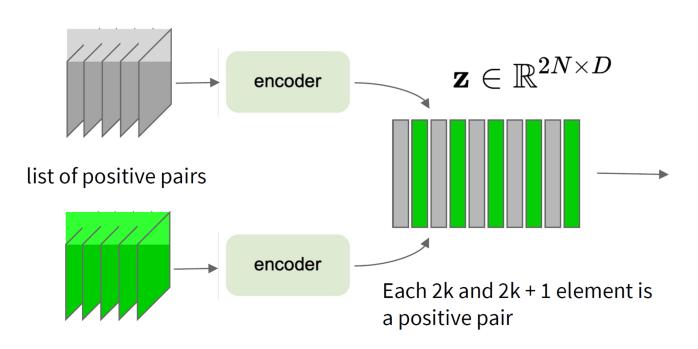
end for

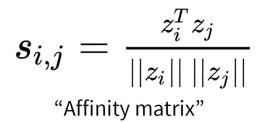
return encoder network $f(\cdot)$, and throw away $g(\cdot)$

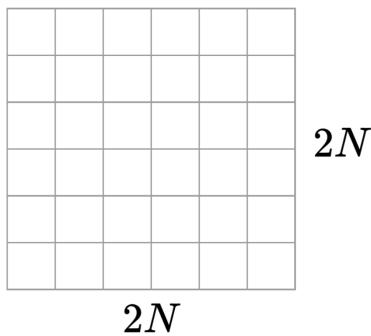
*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

InfoNCE loss:
Use all non-positive samples in the batch as x⁻

SimCLR: mini-batch training

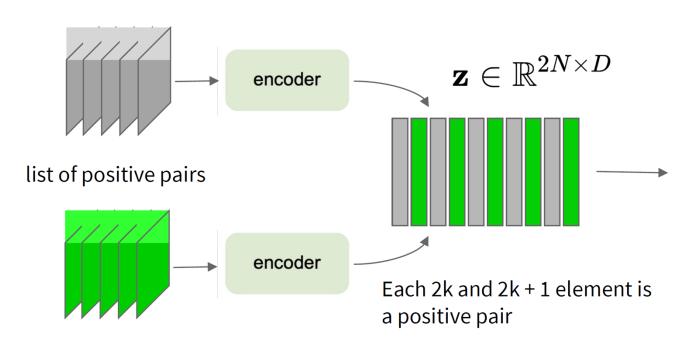






*We use a slightly different formulation in the assignment. You should follow the assignment instructions.

SimCLR: mini-batch training



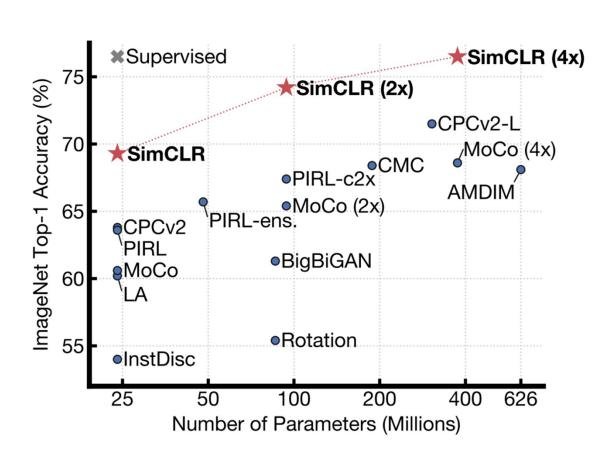
[&]quot;Affinity matrix"

2N

2N

^{*}We use a slightly different formulation in the assignment. You should follow the assignment instructions.

Training linear classifier on SimCLR features



Train feature encoder on ImageNet (entire training set) using SimCLR.

Freeze feature encoder, train a linear classifier on top with labeled data.

Semi-supervised learning on SimCLR features

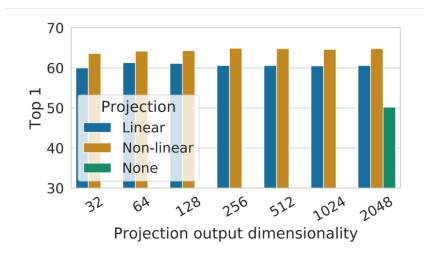
	Architecture	Label fraction	
Method		1%	10%
		Top 5	
Supervised baseline	ResNet-50	48.4	80.4
Methods using other label-propagation:			
Pseudo-label	ResNet-50	51.6	82.4
VAT+Entropy Min.	ResNet-50	47.0	83.4
UDA (w. RandAug)	ResNet-50	-	88.5
FixMatch (w. RandAug)	ResNet-50	-	89.1
S4L (Rot+VAT+En. M.)	ResNet-50 (4 \times)	-	91.2
Methods using representation learning only:			
InstDisc	ResNet-50	39.2	77.4
BigBiGAN	RevNet-50 $(4\times)$	55.2	78.8
PIRL	ResNet-50	57.2	83.8
CPC v2	ResNet-161(*)	77.9	91.2
SimCLR (ours)	ResNet-50	75.5	87.8
SimCLR (ours)	ResNet-50 $(2\times)$	83.0	91.2
SimCLR (ours)	ResNet-50 $(4\times)$	85.8	92.6

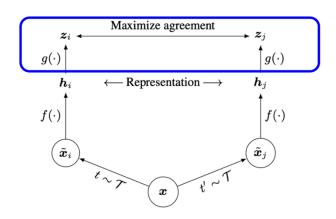
Table 7. ImageNet accuracy of models trained with few labels.

Train feature encoder on ImageNet (entire training set) using SimCLR.

Finetune the encoder with 1% / 10% of labeled data on ImageNet.

SimCLR design choices: projection head





Linear / non-linear projection heads improve representation learning.

A possible explanation:

- contrastive learning objective may discard useful information for downstream tasks
- representation space z is trained to be invariant to data transformation.
- by leveraging the projection head g(·), more information can be preserved in the h representation space

SimCLR design choices: large batch size

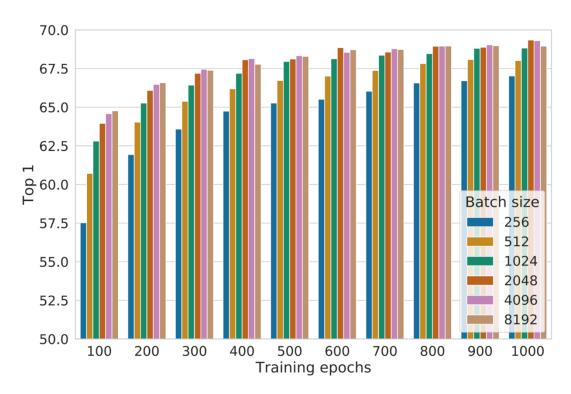


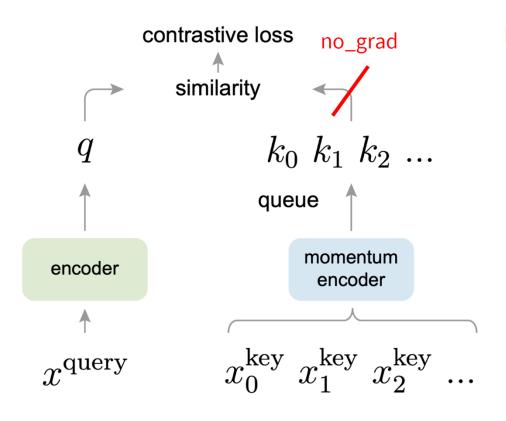
Figure 9. Linear evaluation models (ResNet-50) trained with different batch size and epochs. Each bar is a single run from scratch.¹⁰

Large training batch size is crucial for SimCLR!

Large batch size causes large memory footprint during backpropagation: requires distributed training on TPUs (ImageNet experiments)

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

Momentum Contrastive Learning (MoCo)

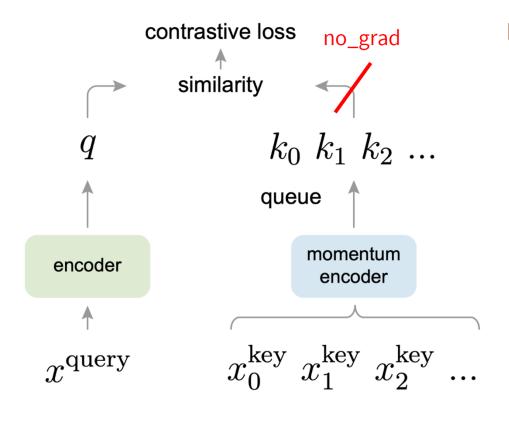


Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.

Source: He et al., 2020

Momentum Contrastive Learning (MoCo)



Key differences to SimCLR:

- Keep a running queue of keys (negative samples).
- Compute gradients and update the encoder only through the queries.
- Decouple min-batch size with the number of keys: can support a large number of negative samples.
- The key encoder is slowly progressing through the momentum update rules: $\theta_{\mathbf{k}} \leftarrow m\theta_{\mathbf{k}} + (1-m)\theta_{\mathbf{q}}$

Source: He et al., 2020

MoCo

Generate a positive pair by sampling data augmentation functions

No gradient through the key

Update the FIFO negative sample queue

Algorithm 1 Pseudocode of MoCo in a PyTorch-like style.

```
# f_q, f_k: encoder networks for query and key
 queue: dictionary as a queue of K keys (CxK)
 m: momentum
# t: temperature
f_k.params = f_q.params # initialize
for x in loader: # load a minibatch x with N samples
   x_g = aug(x) # a randomly augmented version
   x k = aug(x) # another randomly augmented version
  q = f_q.forward(x_q) # queries: NxC
   k = f k.forward(x k) # kevs: NxC
  k = k.detach() # no gradient to keys
    positive logits: Nx1
                                                          Use the running
   l_pos = bmm(q.view(N, 1, C), k.view(N, C, 1))
                                                           queue of keys as the
   # negative logits: NxK
   l_neg = mm(g.view(N,C), queue.view(C,K))
                                                          negative samples
   # logits: Nx(1+K)
  logits = cat([l_pos, l_neg], dim=1)
  # contrastive loss, Eqn.(1)
  labels = zeros(N) # positives are the 0-th
                                                             InfoNCE loss
  loss = CrossEntropyLoss(logits/t, labels)
   # SGD update: query network
   loss.backward()
  update(f_q.params)
                                                             Update f k through
    momentum update: key network
   f_k.params = m*f_k.params+(1-m)*f_q.params
                                                             momentum
   # update dictionary
  enqueue (queue, k) # enqueue the current minibatch
   dequeue (queue) # dequeue the earliest minibatch
                                                           Source: He et al., 2020
bmm: batch matrix multiplication; mm: matrix multiplication; cat: concatenation.
```

MoCo V2

Improved Baselines with Momentum Contrastive Learning

Xinlei Chen Haoqi Fan Ross Girshick Kaiming He Facebook AI Research (FAIR)

A hybrid of ideas from SimCLR and MoCo:

- From SimCLR: non-linear projection head and strong data augmentation.
- From MoCo: momentum-updated queues that allow training on a large number of negative samples (no TPU required!).

MoCo vs. SimCLR vs. MoCo V2

	unsup. pre-train			ImageNet	VOC detection			
case	MLP	LP aug+ cos epochs		acc.	AP ₅₀	AP	AP ₇₅	
supervised					76.5	81.3	53.5	58.8
MoCo v1				200	60.6	81.5	55.9	62.6
(a)	✓			200	66.2	82.0	56.4	62.6
(b)		\checkmark		200	63.4	82.2	56.8	63.2
(c)	✓	\checkmark		200	67.3	82.5	57.2	63.9
(d)	✓	✓	✓	200	67.5	82.4	57.0	63.6
(e)	✓	\checkmark	\checkmark	800	71.1	82.5	57.4	64.0

Table 1. **Ablation of MoCo baselines**, evaluated by ResNet-50 for (i) ImageNet linear classification, and (ii) fine-tuning VOC object detection (mean of 5 trials). "**MLP**": with an MLP head; "**aug+**": with extra blur augmentation; "**cos**": cosine learning rate schedule.

Key takeaways:

 Non-linear projection head and strong data augmentation are crucial for contrastive learning.

MoCo V2

		ImageNet						
case	MLP	aug+	cos	epochs	batch	acc.		
MoCo v1 [6]				200	256	60.6		
SimCLR [2]	✓	\checkmark	\checkmark	200	256	61.9		
SimCLR [2]	✓	\checkmark	\checkmark	200	8192	66.6		
MoCo v2	✓	\checkmark	\checkmark	200	256	67.5		
results of longer unsupervised training follow:								
SimCLR [2]	✓	✓	✓	1000	4096	69.3		
MoCo v2	✓	\checkmark	\checkmark	800	256	71.1		

Table 2. **MoCo vs. SimCLR**: ImageNet linear classifier accuracy (**ResNet-50, 1-crop 224**×**224**), trained on features from unsupervised pre-training. "aug+" in SimCLR includes blur and stronger color distortion. SimCLR ablations are from Fig. 9 in [2] (we thank the authors for providing the numerical results).

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).

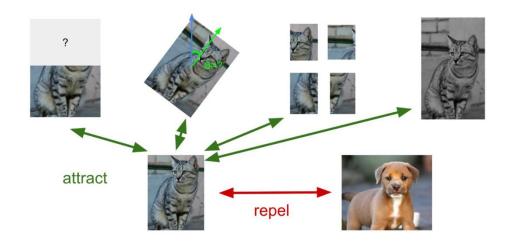
MoCo vs. SimCLR vs. MoCo V2

	mechanism	batch	memory / GPU	time / 200-ep.
ĺ	MoCo	256	5.0G	53 hrs
	end-to-end	256	7.4G	65 hrs
	end-to-end	4096	$93.0G^{\dagger}$	n/a

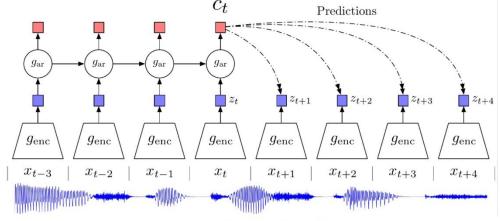
Table 3. **Memory and time cost** in 8 V100 16G GPUs, implemented in PyTorch. †: based on our estimation.

Key takeaways:

- Non-linear projection head and strong data augmentation are crucial for contrastive learning.
- Decoupling mini-batch size with negative sample size allows MoCo-V2 to outperform SimCLR with smaller batch size (256 vs. 8192).
- ... all with much smaller memory footprint! ("end-to-end" means SimCLR here)



Instance-level contrastive learning:
contrastive learning based on
positive & negative instances.
Examples: SimCLR, MoCo

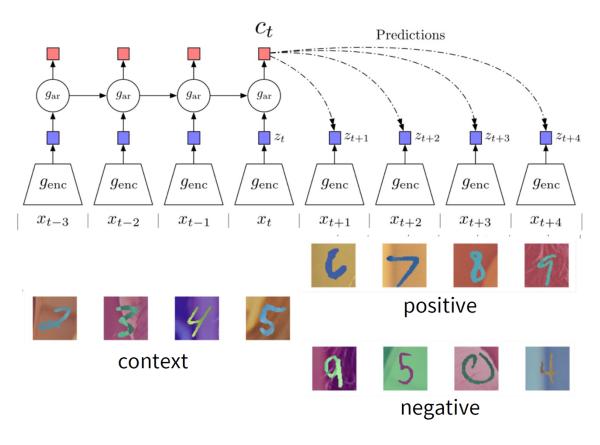


Source: van den Oord et al., 2018

Sequence-level contrastive learning: contrastive learning based on sequential / temporal orders.

Example: Contrastive Predictive Coding (CPC)

Contrastive Predictive Coding (CPC)



Contrastive: contrast between "right" and "wrong" sequences using contrastive learning.

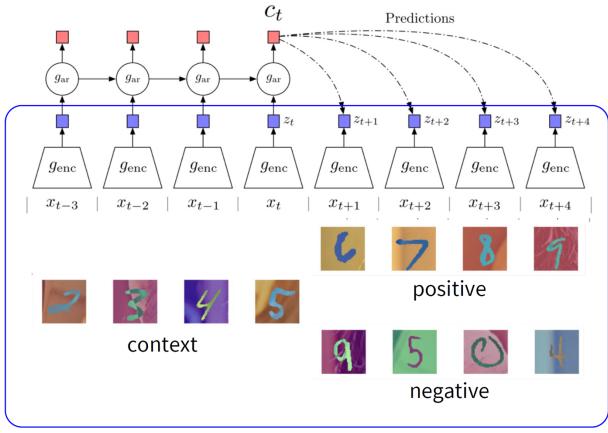
Predictive: the model has to predict future patterns given the current context.

Coding: the model learns useful feature vectors, or "code", for downstream tasks, similar to other self-supervised methods.

Source: van den Oord et al., 2018,

Figure source

Contrastive Predictive Coding (CPC)

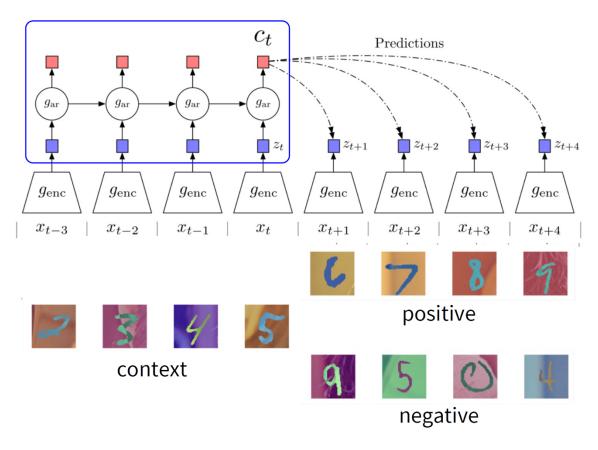


1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$

Source: van den Oord et al., 2018,

Figure source

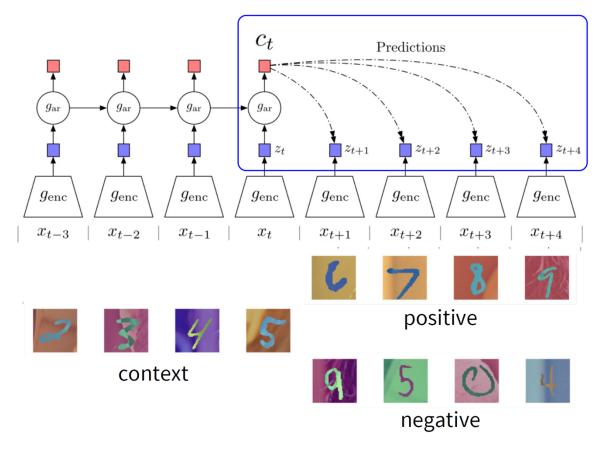
Contrastive Predictive Coding (CPC)



- 1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$
- 2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar}). The original paper uses GRU-RNN here.

Figure source Source: van den Oord et al., 2018,

Contrastive Predictive Coding (CPC)



- 1. Encode all samples in a sequence into vectors $z_t = g_{enc}(x_t)$
- 2. Summarize context (e.g., half of a sequence) into a context code c_t using an auto-regressive model (g_{ar})
- 3. Compute InfoNCE loss between the context c_t and future code z_{t+k} using the following time-dependent score

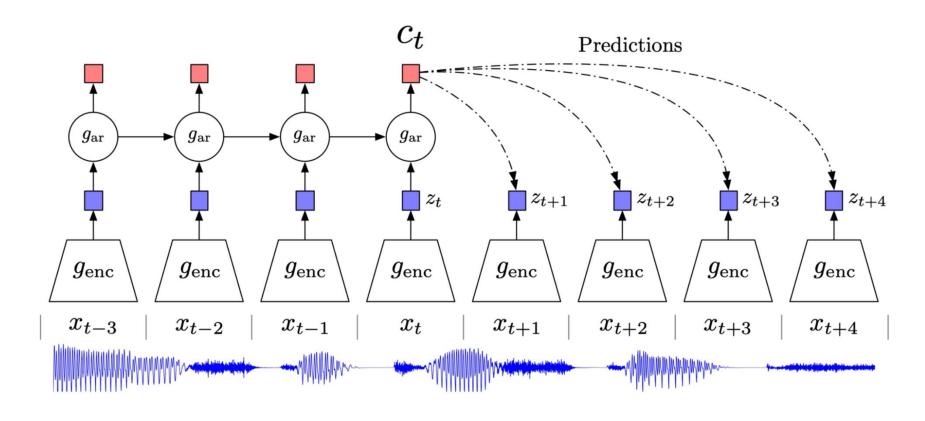
function: $s_k(z_{t+k},c_t)=z_{t+k}^TW_kc_t$

, where W_k is a trainable matrix.

Source: van den Oord et al., 2018,

Figure source

CPC example: modeling audio sequences



CPC example: modeling audio sequences

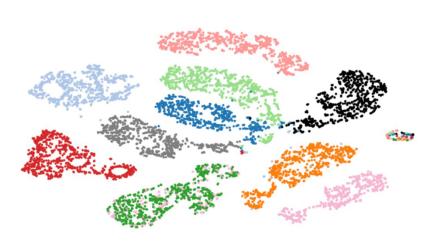


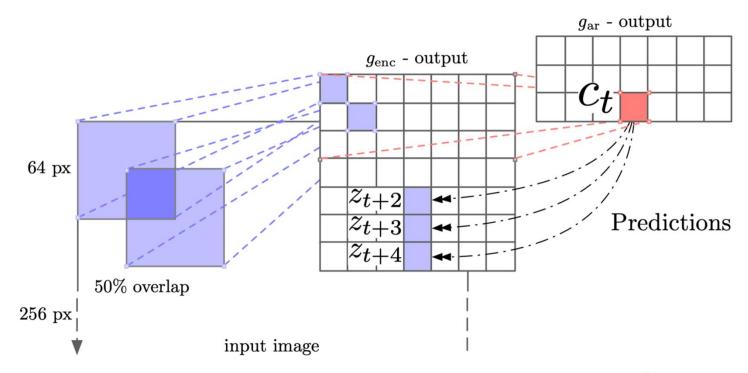
Figure 2: t-SNE visualization of audio (speech) representations for a subset of 10 speakers (out of 251). Every color represents a different speaker.

Method	ACC
Phone classification	
Random initialization	27.6
MFCC features	39.7
CPC	64.6
Supervised	74.6
Speaker classification	
Random initialization	1.87
MFCC features	17.6
CPC	97.4
Supervised	98.5

Linear classification on trained representations (LibriSpeech dataset)

CPC example: modeling visual context

Idea: split image into patches, model rows of patches from top to bottom as a sequence. I.e., use top rows as context to predict bottom rows.

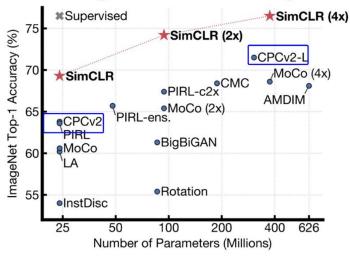


CPC example: modeling visual context

Method	Top-1 ACC
Using AlexNet conv5	
Video [28]	29.8
Relative Position [11]	30.4
BiGan [35]	34.8
Colorization [10]	35.2
Jigsaw [29] *	38.1
Using ResNet-V2	
Motion Segmentation [36]	27.6
Exemplar [36]	31.5
Relative Position [36]	36.2
Colorization [36]	39.6
CPC	48.7

Table 3: ImageNet top-1 unsupervised classification results. *Jigsaw is not directly comparable to the other AlexNet results because of architectural differences.

- Compares favorably with other pretext taskbased self-supervised learning method.
- Doesn't do as well compared to newer instance-based contrastive learning methods on image feature learning.



A general formulation for contrastive learning:

$$\operatorname{score}(f(x),f(x^+)) >> \operatorname{score}(f(x),f(x^-))$$

InfoNCE loss: N-way classification among positive and negative samples

$$L = -\mathbb{E}_X \left[\log \frac{\exp(s(f(x), f(x^+)))}{\exp(s(f(x), f(x^+)) + \sum_{j=1}^{N-1} \exp(s(f(x), f(x_j^-))))} \right]$$

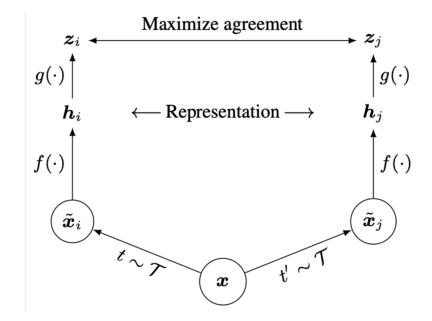
Commonly known as the InfoNCE loss (van den Oord et al., 2018)

A lower bound on the mutual information between f(x) and $f(x^+)$

$$MI[f(x),f(x^+)] - \log(N) \geq -L$$

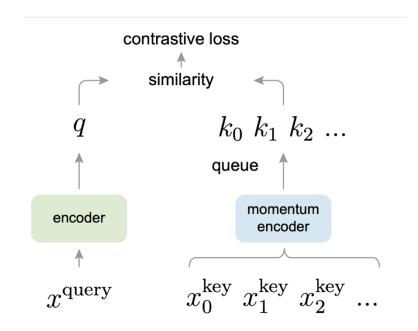
SimCLR: a simple framework for contrastive representation learning

- Key ideas: non-linear projection head to allow flexible representation learning
- Simple to implement, effective in learning visual representation
- Requires large training batch size to be effective; large memory footprint



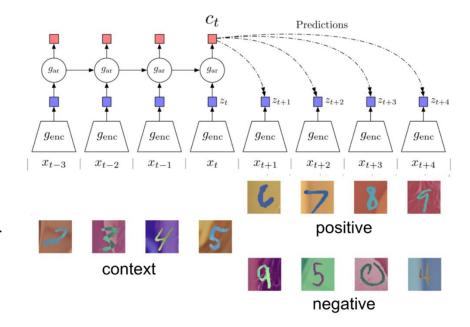
MoCo (v1, v2): contrastive learning using momentum sample encoder

- Decouples negative sample size from minibatch size; allows large batch training without TPU
- MoCo-v2 combines the key ideas from SimCLR, i.e., nonlinear projection head, strong data augmentation, with momentum contrastive learning



CPC: sequence-level contrastive learning

- Contrast "right" sequence with "wrong" sequence.
- InfoNCE loss with a time-dependent score function.
- Can be applied to a variety of learning problems, but not as effective in learning image representations compared to instancelevel methods.



Other examples: MoCo v3

"This paper does not describe a novel method."

An Empirical Study of Training Self-Supervised Vision Transformers

Xinlei Chen* Saining Xie* Kaiming He Facebook AI Research (FAIR)

Code: https://github.com/facebookresearch/moco-v3

Abstract

This paper does not describe a novel method. Instead, it studies a straightforward, incremental, yet must-know baseline given the recent progress in computer vision: selfsupervised learning for Vision Transformers (ViT). While the training recipes for standard convolutional networks have been highly mature and robust, the recipes for ViT are yet to be built, especially in the self-supervised scenarios where training becomes more challenging. In this work, we go back to basics and investigate the effects of several fundamental components for training self-supervised ViT. We observe that instability is a major issue that degrades accuracy, and it can be hidden by apparently good results. We reveal that these results are indeed partial failure, and they can be improved when training is made more stable. We benchmark ViT results in MoCo v3 and several other selfsupervised frameworks, with ablations in various aspects. We discuss the currently positive evidence as well as challenges and open questions. We hope that this work will provide useful data points and experience for future research.

framework	model	params	acc. (%)
linear probing:			
iGPT [9]	iGPT-L	1362M	69.0
iGPT [9]	iGPT-XL	6801M	72.0
MoCo v3	ViT-B	86M	76.7
MoCo v3	ViT-L	304M	77.6
MoCo v3	ViT-H	632M	78.1
MoCo v3	ViT-BN-H	632M	79.1
MoCo v3	ViT-BN-L/7	304M	81.0
end-to-end fine-tuning:			
masked patch pred. [16]	ViT-B	86M	79.9 [†]
MoCo v3	ViT-B	86M	83.2
MoCo v3	ViT-L	304M	84.1

Table 1. **State-of-the-art Self-supervised Transformers** in ImageNet classification, evaluated by linear probing (top panel) or end-to-end fine-tuning (bottom panel). Both iGPT [9] and masked patch prediction [16] belong to the masked auto-encoding paradigm. MoCo v3 is a contrastive learning method that compares two (224×224) crops. ViT-B, -L, -H are the Vision Transformers proposed in [16]. ViT-BN is modified with BatchNorm, and "/7" denotes a patch size of 7×7. †: pre-trained in JFT-300M.

Chen et al., An Empirical Study of Training Self-Supervised Vision Transformers, FAIR

Other examples: Masked Autoencoder

method	pre-train data	ViT-B	ViT-L	ViT-H	ViT-H ₄₄₈
scratch, our impl.	-	82.3	82.6	83.1	-
DINO [5]	IN1K	82.8	-	-	Ψ.
MoCo v3 [9]	IN1K	83.2	84.1	-	-
BEiT [2]	IN1K+DALLE	83.2	85.2	-	-
MAE	IN1K	83.6	85.9	86.9	87.8

Other examples: DINO

Emerging Properties in Self-Supervised Vision Transformers

Mathilde Caron^{1,2} Hugo Touvron^{1,3} Ishan Misra¹ Hervé Jegou¹ Julien Mairal² Piotr Bojanowski¹ Armand Joulin¹

¹ Facebook AI Research ² Inria* ³ Sorbonne University

Figure 1: Self-attention from a Vision Transformer with 8×8 patches trained with no supervision. We look at the self-attention of the [CLS] token on the heads of the last layer. This token is not attached to any label nor supervision. These maps show that the model automatically learns class-specific features leading to unsupervised object segmentations.

Other examples: DINO v2

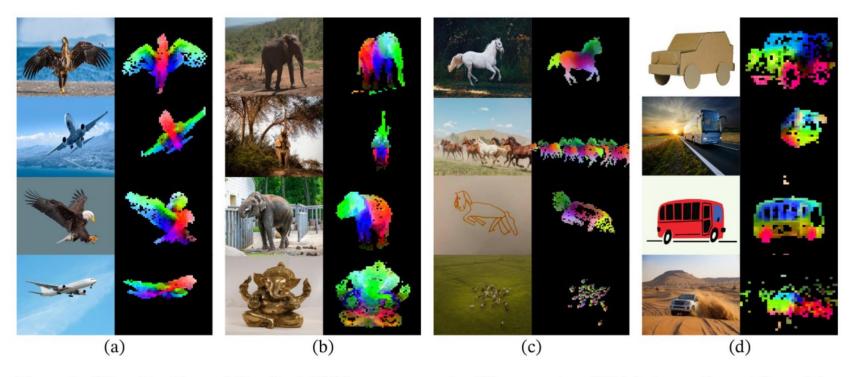
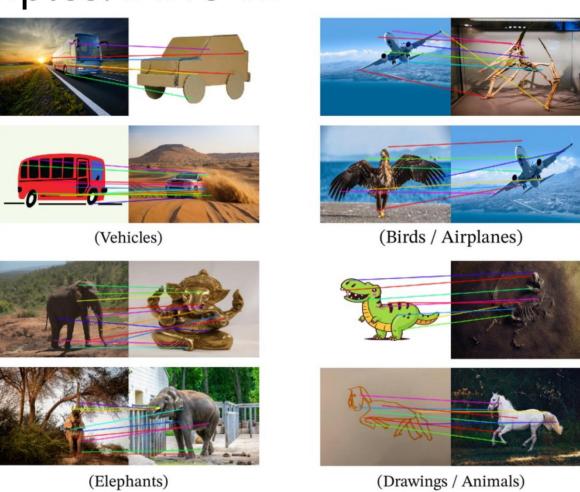


Figure 1: **Visualization of the first PCA components.** We compute a PCA between the patches of the images from the same column (a, b, c and d) and show their first 3 components. Each component is matched to a different color channel. Same parts are matched between related images despite changes of pose, style or even objects. Background is removed by thresholding the first PCA component.

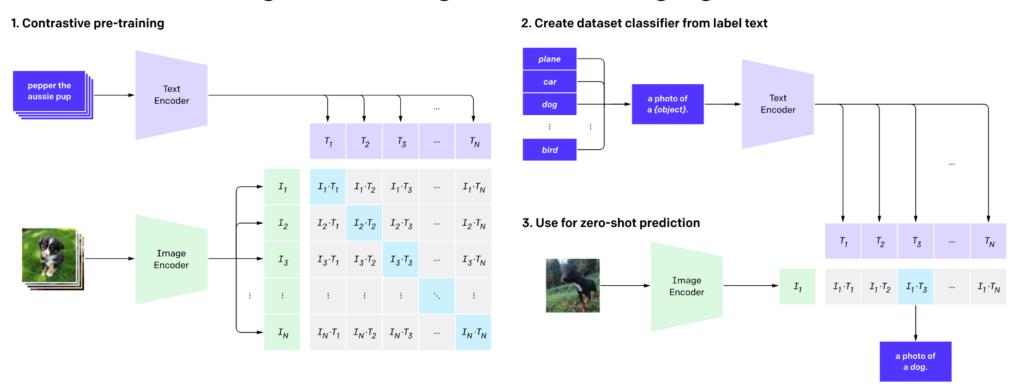
Other examples: DINO v2



(Drawings / Animals)

Other examples: CLIP

Contrastive learning between image and natural language sentences



CLIP (Contrastive Language–Image Pre-training) Radford et al., 2021