(ZETSHLEEFE D))

FI\E ZESGLEEES

=R
FEARKESHALEREFPT

2024 FhZ=

mailto:hwenbing@126.com

Supervised pretraining on large labeled, datasets
has led to successful transfer learning

TS
_NF :(O 00O /(l\ A
=l = M = G =
Data Labelers Pretraining Task Downstream Tasks

ImageNet

* Pretrain for fine-grained image classification
over 1000 classes

iy I e Use feature representations for
Tiao K g'-::.';;z-:;_:‘;ex- ' downstream tasks, e.g. object detection,
image segmentation, and action recognition

S e B — ey

[Deng et al., 2009]

Supervised pretraining on large labeled, datasets
has led to successful transfer learning

3 S SNLI Dataset
= Premise:
S S Ruth Bader Ginsburg being

o FEiS el i s == % = appointed to the US Supreme
B RO e - 2 Court.

Vi i)

Hypothesis:
A grilled sandwich on a plate.

Label:
Contradiction [different scenes]

Across images, video, and text

[Deng et al., 2009] [Carreira et al., 2017] [Conneau et al., 2017]

But supervised pretraining comes at a cost...

* Time-consuming and expensive to label
datasets for new tasks

* ImageNet: 3 years,
49k Amazon MechanicalTurkers [1]

* Domain expertise needed for specialized
tasks

* Radiologists to label medical images

* Native speakers or language
specialists for labeling text in different
languages

Can self-supervised learning help?

 Self-supervised learning (informal definition): supervise using labels generated
from the data without any manual or weak label sources

* |dea: Hide or modify part of the input. Ask model to recover input or classify what
changed.

 Self-supervised task referred to as the pretext task

200 o i = sl -

Data Labelers Pretraining Task Downstream Tasks

Pretext Task: Classify the Rotation

0°
270° rotation 90° rotation N rotation

Catfish species that swims

s . ; |
Identifying the object helps solve rotation task! upside down...

Pretext Task: Classify the Rotation

______ 1
| Objectives:
ConvNet | > Maximize prob.
-~ g(X,y=0) model F(.) F(x°)
Rotate 0 degrees | Predict 0 degrees rotation (y=0)

Rotated image: X"’

ConvNet p Maximize prob.
S i model F(.) | ol)

—p g(X,y=l) —P SN

|
|
|
|
|
|
|

Rotate 90 degrees : ’ Predict 90 degrees rotation (y=1)
Rotated image: X ‘
|
| ConvNet Maximize prob. |
> (X, y=2) ™ modelFQ) | | T F (X%
Image X Rotate 180 degrees | Predict 180 degrees rotation (y=2) |

Rotated image: X’

Rotate 270 degrees

Rotated image: X~

|
|

ConvNet p Maximize prob. |

model F(.) FI(X?) |

‘ Predict 270 degrees rotation (y=3) |

Learning rotation improves results on object classification,

object segmentation, and object detection tasks. (Gidaris et al., ICLR 2018]

https://arxiv.org/abs/1803.07728

https://arxiv.org/abs/1803.07728

Benefits of Self-Supervised Learning

v Like supervised pretraining, can learn general-purpose feature representations
for downstream tasks

v Reduces expense of hand-labeling large datasets

v" Can leverage nearly unlimited (unlabeled) data available on the web

(©) L 4 You([

995 photos uploaded 6000 tweets sent 500 hours of video uploaded
every second every second every minute

Today’s Plan

2. Examples of self-supervision in NLP
* Word embeddings (e.g., word2vec)
* Language models (e.g., GPT)
* Masked language models (e.g., BERT)

Examples of Self-Supervision in NLP

-

 Word embeddings
* Pretrained word representations $ 4 $ t t
* Initializes 1st layer of downstream models . t t t $

* Language models

* Unidirectional, pretrained language
representations

* Initializes full downstream model

 Masked language models

* Bidirectional, pretrained language
representations

* Initializes full downstream model

Examples of Self-Supervision in NLP

 Word embeddings

* Pretrained word representations y 3
* Initializes 1st layer of downstream models . .

-

Word Embeddings

* Goal: represent words as vectors for input into neural networks.

* One-hot vectors? (single 1, rest 0Os)
pizza=[0000010..00000]
pie=[0000000..00010]

& Millions of words — high-dimensional, sparse vectors

&) No notion of word similarity

* |Instead: we want a dense, low-dimensional vector for each word such that words
with similar meanings have similar vectors.

Distributional Semantics

 |dea: define a word by the words that frequently occur nearby in a corpus of text
* “You shall know a word by the company it keeps” (J. R. Firth 1957: 11)

* Example: defining “pizza”
* What words frequently occur in the context of pizza?

13% of the United States population eats pizza on any given day.
Mozzarella is commonly used on pizza, with the highest quality mozzarella from Naples.
In ITtaly, pizza served in formal settings is eaten with a fork and knife.

e Can we use distributional semantics to develop a pretext task for self-supervision?

Pretext Task: Predict the Center Word

* Move context window across text data and use words in window to predict the
center word.

* No hand-labeled data is used!

predict: pizza
t

In Italy, pizza served in] formal settings is eaten with a fork and knife.

context window,
size 2 repeat for

cach word - predict: fq rk

In Italy, pizza served in formal settings is eaten [with a fork and knife.]

Pretext Task: Predict the Context Words

* Move context window across text data and use words in window to predict the
context words, given the center word.

* No hand-labeled data is used!

predict: In ltaly served in
4 4

4 4
I I

In Italy, pizza served i@]formal settings 1s eaten with a fork and knife
context window,

_ repeat for L
size 2 cach word - predict: W:th a

and knife

i 4
1 I 1
] L]

4
I
1

In Italy, pizza served in formal settings 1is eaten[%ith a fork land knife}

Case Study: word2vec

* Tool to produce word embeddings using self-supervision by Mikolov et al.

Input

* Supports training word embeddings using 2 architectures:
e Continuous bag-of-words (CBOW): predict the center word : projection
e Skip-gram: predict the context words

* Steps:
1. Start with randomly initialized word embeddings.
2. Move sliding window across unlabeled text data.
3. Compute probabilities of center/context words, given the words in the window.
4. Iteratively update word embeddings via stochastic gradient descent .

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Case Study: word2vec

* Loss function (skip-gram): For a corpus with T words, minimize the negative log
likelihood of the context word we, ; given the center word w.

T Context word Center word
1 / /
J@O) =-%) Z log P(We+; | We: 6)
=1 -ni s \
0 . Model parameters

Context window size

e Use two word embedding matrices (embedding dimension n, vocab size 1):
« Center word embeddings V € R"*!: context word embeddings U € R!*™"

T
exp(Uis V)

Softmax

P(Weyj | we) = P(ut+<Lvt) =

Word vectors _
[Mikolov et al., 2013]

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Case Study: word2vec

* Example: using the skip-gram method (predict context words), compute the
probability of "knife” given the center word “fork”.

P(knife | fork)

1. Get “fork” word vector vy, 2. Compute scores 3. Convert to probabilities

U Ufork scores probabilities

wire D

= spoon III

V

. — P(knife|fork)

. softmax .

\(\’\"gespoon.-- gof\L

L fork ...

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Skip-gram with Negative Sampling

* Let’s see where the complexity is: P./I\(O 9 The expensive
banking computation: O(|V|.d)

Ve Yo A
exp(ulv.) 5 R
log P(o|c) = log Pt —— = logexp(ulv,) — logz exp(ulv,)
2xev €Xp(Uy V) xeV

* ldea: rather than enumerating over all vocabulary, let’s sample!

1
o\x —
]NS(H) - = log G(ugvc) o Z log 0(—U£Vc) () N Le
ke{K samples} —

» Maximize the prob that outside word co-occurs w/ the center
* Minimize the prob of noise/random words far from the center (negatives)

Skip-gram with Negative Sampling

« Have to be careful with sampling negative examples

 Challenge: uniform sampling will sample a lot of stop-words that are very popular.

: N3/4
« Mikolov et al. proposed to sample: p(w;) = fwi) ¥, f(wj)3/4

 Assigns more prob to less frequent words. No theory backing, but works!

4 N

* |dea: rather than enumerating over all vocabulary, let’s sample!

]NS(H) — = log G(ugvc) R Z log 0(—U£Vc)
ke{K samples}

« Maximize the prob that outside word co-occurs w/ the center

\ « Minimize the prob of noise/random words far from the center (negatives) /

0.5

Case Study: word2vec

* Mikolov et al. released
word2vec embeddings
pretrained on 100 billion
word Google News
dataset.

* Embeddings exhibited
meaningful properties
despite being trained with
no hand-labeled data.

Country and Capital Vectors Projected by PCA
2 I 1 1 1 1 |

Chinas
Beijing
1.5 Russias
Japan<
1 L Moscow
Turkey< Ankara ~Tokyo
05 F
Polandk
0} Germxany%
France “Warsaw
x —Berlin
-0.5 F Italy Paris
*Athens
Greeces 2
1 - Spain¢ Home
% >Madrid
-1.5 Portugal diishon
_2 1 1 | 1 | | |

-2 -1.5 -1 -0.5 0 0.5 1 1.5

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Case Study: word2vec

* Vector arithmetic can be used to evaluate word embeddings on analogies

* France is to Paris as Japanisto? .
Cosine similarity
VY »
w* = argmax,, w))
low ¥l

/’ Tokyo

Japan

/ Paris

France

where ¥ = Vparis — VFrance T Viapan

. w" =Tokyo
Expected answer

* Analogies have become a common intrinsic task to evaluate the properties learned
by word embeddings

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

Relationship

Example |

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

[taly: Rome
small: larger
Baltimore: Maryland
Messi: midhielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
[BM: McNealy

France: t‘c'lpr'.lS

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

Relationship

Example |

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

[taly: Rome
small: larger
Baltimore: Maryland
Messi: midhielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
[BM: McNealy

France: t‘c'lpr'.'lS

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

Relationship

Example |

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

[taly: Rome
small: larger
Baltimore: Maryland
Messi: midhielder
Berlusconi: Italy

Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
[BM: McNealy

France: t‘c'lpr'.'lS

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

Relationship

Example |

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

[taly: Rome
small: larger
Baltimore: Maryland
Messi: midhielder

Berlusconi: Italy

T,
Sarkozy: Nicolas

Google: Android
Google: Yahoo

Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
[BM: McNealy

France: t‘c'lpr'.'lS

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

Relationship

Example |

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

[taly: Rome
small: larger
Baltimore: Maryland
Messi: midhielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany: bratwurst

Japan: Tokyo

cold: colder

Dallas: Texas
Mozart: violinist
Merkel: Germany

Putin: Medvedev

IBM: Linux
[BM: McNealy

France: t‘c'lpr'.'lS

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs
USA: pizza

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

Relationship

Example |

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

Japan - sushi

[taly: Rome

small: larger

Baltimore: Maryland

Messi: midfielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany: bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
[BM: McNealy

France: t‘c'lpr'.'lS

Florida: Tallahassee
quick: quicker
Kona: Hawan

Picasso: painter

Koizumi: Japan

Obama: Barack
Apple: iPhone
Apple: Jobs

USA: pizza

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

Relationship

Example |

Example 2

Example 3

France - Paris
big - bigger
Miami - Florida
Einstein - scientist
Sarkozy - France
copper - Cu
Berlusconi - Silvio
Microsoft - Windows
Microsoft - Ballmer

[taly: Rome
small: larger
Baltimore: Maryland
Messi: midhielder
Berlusconi: Italy
zinc: Zn
Sarkozy: Nicolas
Google: Android
Google: Yahoo

Germany) bratwurst

Japan: Tokyo
cold: colder
Dallas: Texas
Mozart: violinist
Merkel: Germany
gold: Au
Putin: Medvedev
IBM: Linux
[BM: McNealy

Florida: Tallahassee
quick: quicker
Kona: Hawaii

Picasso: painter
Koizumi: Japan
uranium: plutonium
Obama: Barack
Apple: iPhone
Apple: Jobs

France;] tapas

USA) pizza

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

Mismatch Between Cosine and Dot Product

T
» Observation: there a mismatch between P(o|c) = exp(Uovc)
Word2Vec objective and cosine distance! > evexpulv,)
vl v
distance(x,y) = cos(vy, vy) =7
oy [[lw
1.Why use cosine distance instead of dot product?
« Term frequencies affect the embedding norms. 0
« Without normalization, frequent terms would 5 s
seem more similar.
E4r -
2.Why not change W2V objective to use cos? 23|l -
- \ (V) 2 L1 . .
* It’s possible that the resulting vectors would conflate B I | | o
semantic similarity and frequency. : 0 100 1000 10000 100000 les06

frequency

[Measuring Word Significance using Distributed Representations of Words]

Case Study: word2vec

* Pretrained word2vec embeddings can
be used to initialize the first layer of
downstream models

* Improved performance on many
downstream NLP tasks, including
sentence classification, machine
translation, and sequence tagging

 Most useful when downstream
data is limited

* Still being used in applications in
industry today!

positive
H
¢ 2 $ t »
f f f t f
Such a wonderful little production
Word
PER O PER 0] LOC embeddings
A S A S
+ 4 $ t 4

f f f f !

John and Alice visited Yosemite

https://arxiv.org/pdf/1408.5882
https://www.aclweb.org/anthology/N18-2084.pdf
https://arxiv.org/pdf/1603.01360

Examples of Self-Supervision in NLP

* Language models

» Unidirectional, pretrained language
representations

e Initializes full downstream model

Why weren’t word embeddings enough?

Q
* Lack of contextual information
* Each word has a single vector to —
capture the multiple meanings of a The ship is used to ship packages.

d
wor)é)Q

* Don’t capture word use (e.g. syntax)

positive
4
* Most of the downstream model still Trained :
needs training from —
scratch! 4 3 3 A A
. t t t f f
* What self-supervised tasks can we use to
Such a wonderful little production

pretrain full models for contextual
understanding?

The

The cat

The cat sat

The cat sat on

The cat sat on

The cat sat on the mat.

The cat sat on the mat.

P(mat | The cat sat on the)

next word context or prefix

Probability of Upcoming Word

P(X:| X1, ..., X¢—1)

next word context or prefix

LLMs as a Marginal Distribution

e, : « ° ’, next
Directly we train models on “marginals”: wore context
i —

P(X¢| X1, ooy Xe—1)

Some
“The cat sat on the [IJ4l” »

model

LLMs as Implicit Joint Distribution of
Language

* Though implicitly we are learning the full
distribution over the language:

* Remember the chain rule: P(X, ..., X;) = P(Xy) Hle P(X; | X1, X5 ..., X;)

* Language Modeling £ learning prob distribution over language sequence.

Doing Things with Language Model

- What is the probability of | like Johns Hopkins University”
"“like Hopkins | University Johns”

 LMs assign a probability to every sentence (or any string of words).

P(*I like Johns Hopkins University EOS”) =10°

P(“like Hopkins | University Johns EOS”) =10-1°

Doing Things with Language Model (2)

next toxt
contex
word
/—/%
* WWe can rank sentences. AR

P(X¢| X1, ooy Xe—1)

* While LMs show “typicality”, this may be a proxy indicator to other
properties:
« Grammaticality, fluency, factuality, etc.

P("/ like Johns Hopkins University. EOS”) > P("l like John Hopkins University EOS”)
P("/ like Johns Hopkins University. EOS”) > P("University. | Johns EOS Hopkins like”)
P("JHU is located in Baltimore. EOS”) > P("JHU is located in Virginia. EOS”)

Doing Things with Language Model (3)

next foxt
contex
. word
e Can also generate strlngs /O\ -~ ™

P(X¢| X1, ooy Xe—1)
* Let’s say we start "Johns Hopkins is ”
 Using this prompt as initial condition, recursively sample from an LM:

Sample from P(X|"Johns Hopkins is “) —*“located”

Sample from P(X| Johns Hopkins is located”) — ““at”

Sample from P(X|"Johns Hopkins is located at”) — “the”

Sample from P(X| "Johns Hopkins is located at the”) — “state”

Sample from P(X| "Johns Hopkins is located at the state”) — “of”

Sample from P(X|"Johns Hopkins is located at the state of”) — “Maryland”
Sample from P(X| "Johns Hopkins is located at the state of Maryland”) — “EOS”

N oy HWw N R

Why Should We Care About Language
Modeling?

 Language Modeling is an effective proxy for language understanding.

o Effective ability to predict forthcoming words rely on understanding of
context/prefix

 Language Modeling Is a subeemponent superset of many NLP tasks,
especially those involving text generation:
e Summarization
* Machine translation
« Spelling correction
* Dialogue etc.

ou use Language Models every day!

e I'll meet you at the @ >

And now the fun starts

Can't make it Addlabel

Add label
p €3 Brian Strope « €3 Brian Strope -
to me 10 M
May 17 View deta May 17 View details
They finally came through with the Ugh, | took a turn for the worst last night.
contract. | won't be able to make it to the party.

Please have a great time without me.
| expect the work to start tomorrow.,
Sorry for all the delays.

No worries Great news Oh no! Feel We will Sorry to
thanks for thanks for That's great better! miss you! hear that.
2 news
the update! the update
- LS N =
- N w) Reply eply a Forwar
Reply Reply all Forward
\ \

You use Language Models every day!

Google

JHU's best X

=

jhu best majors

jhu best essays

jhu best skin

jhu best places to study

jmu best freshman year

best jhu team hero wars

johns hopkins best dressed sale 2021
johns hopkins best programs

johns hopkins best hospital in the world

P L Lo Pp L oL L L L L P

johns hopkins best neurologist

Google Search I'm Feeling Lucky

Report inappropriate predictions

You use Language Models every day!

It Can be Misused Too ...

Is this a real
science article?

* A lot more about
harms later in the class.

Rooter: A Methodology for the Typical Unification
of Access Points and Redundancy

Jeremy Stribling, Daniel Aguayo and Maxwell Krohn

ABSTRACT

Many physicists would agree that, had it not been for
congestion control, the evaluation of web browsers might never
have occurred. In fact, few hackers worldwide would disagree
with the essential unification of voice-over-IP and public-
private key pair. In order to solve this riddle, we confirm that
SMPs can be made stochastic, cacheable, and interposable.

I. INTRODUCTION

Many scholars would agree that, had it not been for active
networks, the simulation of Lamport clocks might never have
occurred. The notion that end-users synchronize with the
investigation of Markov models is rarely outdated. A theo-
retical grand challenge in theory is the important unification
of virtual machines and real-time theory. To what extent can
web browsers be constructed to achieve this purpose?

Certainly, the usual methods for the emulation of Smalltalk
that paved the way for the investigation of rasterization do
not apply in this area. In the opinions of many, despite the
fact that conventional wisdom states that this grand challenge
is continuously answered by the study of access points, we
believe that a different solution is necessary. It should be
noted that Rooter runs in (loglogn) time. Certainly, the
shortcoming of this type of solution, however, is that compilers
and superpages are mostly incompatible. Despite the fact that
similar methodologies visualize XML, we surmount this issue
without synthesizing distributed archetypes.

The rest of this paper is organized as follows. For starters,
we motivate the need for fiber-optic cables. We place our
work in context with the prior work in this area. To ad-
dress this obstacle, we disprove that even though the much-
tauted autonomous algorithm for the construction of digital-
to-analog converters by Jones [10] is NP-complete, object-
oriented languages can be made signed, decentralized, and
signed. Along these same lines, to accomplish this mission, we
concentrate our efforts on showing that the famous ubiquitous
algorithm for the exploration of robots by Sato et al. runs in
Q((n + logn)) time [22]. In the end, we conclude.

II. ARCHITECTURE

Our research is principled. Consider the early methodology
by Martin and Smith; our model is similar, but will actually
overcome this grand challenge. Despite the fact that such
a claim at first glance seems unexpected, it is buffetted by
previous work in the field. Any significant development of
secure theory will clearly require that the acclaimed real-
time algorithm for the refinement of write-ahead logging by
Edward Feigenbaum et al. [15] is impossible; our application
is no different. This may or may not actually hold in reality.
We consider an application consisting of n access points.
Next, the model for our heuristic consists of four independent
components: simulated annealing, active networks, flexible
modalities, and the study of reinforcement learning.

We consider an algorithm consisting of n semaphores.
Any unproven synthesis of introspective methodologies will

https://pdos.csail.mit.edu/archive/scigen/

Language Models: A History

« Shannon (1950): The predictive difficulty
(entropy) of English.

Prediction and Entropy of Printed English
By C. E. SHANNON
(ManuscriptReceived Sept. 15, 1950)

A new method of estimating the entropy and redundancy of a language is
described. This method exploits the knowledge of the language statistics pos-
sessed by those who speak the language, and depends on experimental results
in prediction of the next letter when the preceding text is known. Results of
experiments in prediction are given, and some properties of an ideal predictor are
developed.

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X:| X4, ..., X¢—1)

Shannon (1950) build an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

1°t order approximation:

1 element
I_H

P(mat | the cat sat on the) ® P(mat | the)

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X:| X4, ..., X¢—1)

Shannon (1950) build an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

2" order approximation:

2 elements
I_H

P(mat | the cat sat on the) =® P(mat | on the)

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X:| X4, ..., X¢—1)

Shannon (1950) build an approximate language model with word co-
occurrences.

Andrey Markov

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

39 order approximation:
3 elements

P(mat | the cat sat on the) = P(mat | sat on the)

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(X:| X4, ..., X¢—1)

Shannon (1950) build an approximate language model with word co-
occurrences.

Andrey Markov

Then, we can use counts of approximate conditional probability.
Using the 3" order approximation, we can:

count(“sat on the mat”)

P(mat | the cat sat on the) = P(mat | sat on the) = count("on the mat")

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

N-gram Language Models

* Terminology: n-gram is a chunk of n consecutive words:

7\ /Y 14

* unigrams: “cat”, "mat”, “sat”, ...

7\

* bigrams: “the cat”, “cat sat”, "saton”, ...

* trigrams: “the cat sat”, “cat sat on”, “"sat on the”, ...

I\ I\

« four-grams: “the cat sat on”, “cat sat on the”, "sat on the mat”, ...

* n-gram language model:

n — 1 elements
AL

4 \
P(Xe| X1, ooy Xe—1) = P(Xe| Xe—ri4 15 0o Xe—1)

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

Pre-Computed N-Grams Google Books Ngram Viewer

0.00550% -
0.00500% -
0.00450% -
0.00400% -
0.00350% -

0.00300% -

democracy
depression
0.00250% -
0.00200% -
0.00150% -
bomb
0.00100% — terrorism
0.00050%
0.00000% — - - — . : . S — . . .
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams Google Books Ngram Viewer

0.001000% -
0.000900% -
0.000800% - The United States is (All)
0.000700% -

0.000600% —

0.000500% —

0.000400% -

0.000300% - The United States are (All)
0.000200% -

0.000100% -

0~000000% T T T 1 T T T T T
1780 1800 1820 1840 1860 1880 1900 1920 1940

(click on line/label for focus, right click to expand/contract wildcards)

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams Google Books Ngram Viewer

-

0.0000110% -

0.0000100% -

0.0000090% -

\
Language models can

tell us something
about us ...

0.0000080% -

0.0000070% -

0.0000060% -

0.0000050% -

0.0000040% -

0.0000030% -

0.0000020% -

0.0000010% -

0.0000000% -

women vote (All)
men vote (All

D e, S c—

1780

T T T T T T T T
1800 1820 1840 1860 1880 1900 1920 1940

Google n-gram viewer https://books.google.com/ngrams/

Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams Google Books Ngram Viewer

\
Language models can

tell us something
about us ...

0.00700% -

0.00090% -

J

0.00080% —
0.00070% —
0.00060% -
civil war
0.00050% -
0.00040% - emancipation
0.00030% -
0.00020% -

0.00010% -

0.00000% T T T T T T T T T T T
1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

(click on line/label for focus)

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

64

Generation from N-Gram Models

* You can build a simple trigram Language Model over a 1.7 million
words corpus in a few seconds on your laptop*

today the

get probability
distribution

company
bank
price
italian
emirate

0.153
0.153
©0.077
0.039
0.039

* Try for yourself: https://nlpforhackers.io/language-models/

Sparsity problem: not
much granularity in the
probability distribution

Otherwise, seems reasonable!

[adopted from Chris Manning]

65

Generation from N-Gram Models

* Now we can sample from this mode:

today the

get probability
distribution

company
bank
price
italian
emirate

0.153
0.153
©0.077
0.039
0.039

* Try for yourself: https://nlpforhackers.io/language-models/

Sparsity problem: not
much granularity in the
probability distribution

Otherwise, seems reasonable!

[adopted from Chris Manning]

66

Generation from N-Gram Models

* Now we can sample from this mode:

Condition on this

today the priée

Sparsity problem: not

much granularity in the
i of 0.308

get probability £ 0.050 probability distribution

distribution _ror 9.
it 0.046
to 0.046 Otherwise, seems reasonable!

is 0.031

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

Generation from N-Gram Models

* Now we can sample from this mode:

Condition on this
_AL

today the }Jr‘ice of _

Sparsity problem: not
- the ©.072 much granularity in the
gzt_ prpbbablllty 12 0043 probability distribution
Istribution :
oil ©0.043
its ©.936 Otherwise, seems reasonable!
gold ©0.018

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

68

N-Gram Models in Practice

* Now we can sample from this mode:

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

But quite incoherent! To improve coherence, one may consider increasing
larger than 3-grams, but that would worsen the sparsity problem!

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

Why Is language modeling a good pretext task?

v" Captures aspects of language useful for downstream tasks, including long-term
dependencies, syntactic structure, and sentiment

v Lots of available data (especially in high-resource languages, e.g. English)

v" Already a key component of many downstream tasks (e.g. machine translation)

Using language modeling for pretraining

1. Pretrain on language modeling
(pretext task)

* Self-supervised learning

* Large, unlabeled datasets

Copy
weights!

2. Finetune on downstream task
(e.g. sentiment analysis)

* Supervised learning for finetuning

 Small, hand-labeled datasets

are eating dim sum at
4 4 4 $ ¢
1 1 1
They are eating dim sum
positive

4

=58 ss

f f f f f

Such a wonderful little production

Case Study: Generative Pretrained Transformer (GPT)

* Introduced by Radford et al. in 2018 as a “universal” pretrained language
representation

* Pretrained with language modeling

e Uses the Transformer model [Vaswani et al., 2017]

» Better handles long-term dependencies than alternatives (i.e. recurrent
neural networks like LSTMs) and more efficient on current hardware

* Has since had follow-on work with GPT-2 and GPT-3 resulting in even larger
pretrained models

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

Quick Aside: Basics of Transformers

Layer:| 5 § Attention:| Input - Input -

e Model architecture that has The_ The_

recently replaced recurrent neural et o
networks (e.g. LSTMS) as the didn_ didn_
building block in many NLP A L
. o t t
ipelin - 5
p pe = Cross_ Cross_
the_ the_
. street_ street_
- USES SE|f-attentI0n tO pay because_ because_
attention to relevant words in the it_ it_
sequence (“Attention is all you was._ .
need”) too_ too_
tire tire
e Can attend to words that are d_ d_
far away

[Alammar et al., lllustrated Transformer]

https://jalammar.github.io/illustrated-transformer/

Quick Aside: Basics of Transformers

 Composed of two modules:

* Encoder to learn
representations of the input

* Decoder to generate output
conditioned on the encoder
output and the previous
decoder output (auto-
regressive)

e Each block contains a self-
attention and feedforward layer

https://jalammar.github.io/illustrated-transformer/

am a student

3

ENCODER

7y

ENCODER

)

ENCODER

7y

ENCODER

)

ENCODER

)

ENCODER

DECODER

7y

DECODER

3

DECODER

7y

DECODER

3

DECODER

7y

() () (U) () (S

DECODER

A &,

[

lam a J

[Alammar et al., lllustrated Transformer]

https://jalammar.github.io/illustrated-transformer/

After sformer ...

X-formers

Module
Level

e T B

Prior
Attention

—{ Attention —

Local Transformer[156], Gaussian Transformer[42] j

Predictive Attention Transformer[143], Realformer[51], Lazyformer[159] J

Average Attention[164], Hard-Coded Gaussian Attention[161], Synthesizer[lSl])

Li et al. [73], Deshpande and Narasimhan [27], Talking-head Attention[119]
Collaborative MHA[21]

Adaptive Attention Span[126], Multi-Scale Transformer[44])

Dynamic Routing[40, ?4])

—{Absolute)—(BERT[zs], Wang et al. [139], FLOATER[SS])

- Shaw et al. [116], Music Transformer[56], T5[104], Transformer-XL[24]
o (Rae (e
Encoding
—COther Rep. HTTJPE[GS], Roformer[124])

—([mplicit Rep)—(CompIex Embedding[140], R-Transformer [144], CPE[20])
—{Placement)—@ost—LN[zs, 83, 137], pre-LN[6, 17, 67, 136, 141] j

—@ayerNorm)——CSubstitutes)—(AdaNorm[lSS], scaled £, normalization[93], PowerNorm[121]

—(Nurm-free)—(ReZem-Transtrmer[S])
—{Activ. FuncH‘iurish[lDﬁ], GELU[14, 28], GLU[118])

Arch.
Level

Enlarge Product-key Memory[69], Gshard[71], Switch Transformer[36],
Capacity Expert Prototyping[155], Hash Layer[110]

—(Drop_ping)—(All-Attent'ion layer[127], Yang et al. [157])
—Q.ighweight)—([.ite Transformer[148], Funnel Transformer[23], DeLighT[91])

Realformer([51], Predictive Attention Transformer[143], Transparent Attention[8]
onnectivi Feedback Transformer [34]
- UT[26], Conditional Computation Transformer([7], DeeBERT[150], PABEE[171], Li et al. [79],
ACT
Sun et al. [129]

Transformer-XL[24], Compressive Transformer[103], Memformer[147]
Yoshida et al. [160], ERNIE-Doc[30]

Miculicich et al. [92], HIBERT[166], Liu and Lapata [86], Hi-Transformer[145]
TENER[154], TNT[48]

—(Pre—Train)—

—w)—@T[IZS], Macaron Transformer[89], Sandwich Transformer[99], MAN[35], DARTSformer[167] J
—(Encoder)—(BERT[zs], RoBERTa[87], BigBird[163]]

—(Decoder HGH[IOI], GPT-2[102], GPT-3[12] j

—W)—CBART[TZ], T5[104], Switch Transformer[Sﬁ])

—(NT_.P)—(BERT[ZS],ET[IZS], Transformer-XL[24],Compressive Transformer[103], TENER[154] J
—(CV »—{(Image Transformer[94], DETR[13], ViT[33], Swin Transformer[88], ViViT[3])

—@udio j—(Speech Transformer([31], Streaming Transformer[15], Reformer-TTS[57], Music Transformer[56))

—MHVEMIBERT[T’S], VLBERT([125], VideoBERT[128], M6[81], Chimera[45], DALL-E[107], CogView[29] j

76

Impact of Transformers
A building block for a variety of LMs

\/
0’0

Encoders K

t 222" Decoders

L 4

Encoder- o

Decoders B

Examples: BERT, RoBERTa, SciBERT.
Captures bidirectional context.

Wait, how do we pretrain them?

Examples: GPT-2, GPT-3, LaMDA
Other name: causal or auto-regressive language model

Nice to generate from; can't condition on future words

Examples: Transformer, T5, Meena

What's the best way to pretrain them?

Case Study: Generative Pretrained Transformer (GPT)

* Pretrain the Transformer decoder model on the language modeling task:

Word in a sequence

n
LLM(U) = Z log P(u; luj—k, ..., Uj—1;)
=1

Text L T
Context

COrpus _
window

hi_js -, hi—g = decoder(u;_g, ..., Uj_1)

P(ui |ui—kI ---;ui—1) — SOftmaX(hi—lm/eT)
T
Previous word hidden Linear layer
representation

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

Case Study: Generative Pretrained Transformer (GPT)

* Finetune the pretrained Transformer model with a randomly initialized linear
layer for supervised downstream tasks:

Labeled dat;iset Input sequence x, label y

l

Ldownst'ream(c) — z logP(y | X1, o) Xm)
(x, ¥)

hy, o B

decoder(uy, ..., Uy,)

Pylxy,...xpm) = softmax(h,Wy) New linear layer,

Last word’s hidden / S replaces W, from
representation pretraining

* Linear layer makes up most of the new parameters needed for downstream tasks,
rest are initialized from pretraining!

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

Case Study: Generative Pretrained Transformer (GPT)

* Pretrained on the BooksCorpus (7000 unique books)

* Achieved state-of-the-art on downstream question answering tasks (as well as
natural language inference, semantic similarity, and text classification tasks)

select the correct middle and high school exam reading

end to the story comprehension questions
- —
Method Story Cloze RACE-m RACE-h ~RACE
val-LS-skip [55] 76.5 - - -
Hidden Coherence Model [7] 77.6 - - -
Dynamic Fusion Net [67] (9x) - 55.6 49 .4 51.2
BiAttention MRU [59] (9x) - 60.2 50.3 53.3

Finetuned Transformer LM (ours) 86.5 62.9 57.4 59.0

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

Examples of Self-Supervision in NLP

* Masked language models

* Bidirectional, pretrained language
representations

* Initializes full downstream model

Using context from the future

* Consider predicting the next word for the following example:
movies park
store theater

library treehouse
school pool

He is going to the

 What if you have more (bidirectional) context?

store
He is going to the to buy some milk. market
Safeway

* Information from the future can be helpful for language understanding!

Masked language models (MLMs)

* With bidirectional context, if we aren’t careful, model can “cheat” and see next word

are eating dim sum at
4 $ 4 :

I

They are eating dim sum

* What if we mask out some words and ask the model to predict them?
are di’m

They [MASK] eating [MASK] sum

This is called masked language modeling.

n
—
)
O
O
O
-
LLl

BERT

Bidirectional Encoder Representations from Transformers

BERT

Bidirectional Encoder Representations from Transformers

Like Bidirectional LSTMs (ELMo), let’s look in both directions

BERT

Bidirectional Encoder Representations from Transformers

Let's only use Transformer Encoders, no Decoders

BERT

Bidirectional Encoder Representations from Transformers

It's a language model that builds rich representations
via self-supervised learning (pre-training)

BERT (2018)

Transformer based network
to learn representations of
language

Improvements
- Bi-directional LSTM -> Self-
attention
- Massive data
- Masked-LM objective

BERT: Pre-training of Deep Bidirectional Transformers for
Language Understanding

Jacob Devlin Ming-Wei Chang Kenton Lee

Kristina Toutanova

Google Al Language
{jacobdevlin,mingweichang, kentonl, kristout}@google.com

Abstract

We introduce a new language representa-
tion model called BERT, which stands for
Bidirectional Encoder Representations from
Transformers. Unlike recent language repre-
sentation models (Peters et al., 2018a; Rad-
ford et al., 2018), BERT is designed to pre-
train deep bidirectional representations from
unlabeled text by jointly conditioning on both
left and right context in all layers. As a re-
sult, the pre-trained BERT model can be fine-
tuned with just one additional output layer
to create state-of-the-art models for a wide
range of tasks, such as question answering and
language inference, without substantial task-
specific architecture modifications.

BERT is conceptually simple and empirically
powerful. It obtains new state-of-the-art re-
sults on eleven natural language processing
tasks, including pushing the GLUE score to
80.5% (7.7% point absolute improvement),
MultiNLI accuracy to 86.7% (4.6% absolute
improvement), SQuAD v1.1 question answer-
ing Test F1 to 932 (1.5 noint absolute im-

There are two existing strategies for apply-
ing pre-trained language representations to down-
stream tasks: feature-based and fine-tuning. The
feature-based approach, such as ELMo (Peters
et al., 2018a), uses task-specific architectures that
include the pre-trained representations as addi-
tional features. The fine-tuning approach, such as
the Generative Pre-trained Transformer (OpenAl
GPT) (Radford et al., 2018), introduces minimal
task-specific parameters, and is trained on the
downstream tasks by simply fine-tuning all pre-
trained parameters. The two approaches share the
same objective function during pre-training, where
they use unidirectional language models to learn
general language representations.

We argue that current techniques restrict the
power of the pre-trained representations, espe-
cially for the fine-tuning approaches. The ma-
Jor limitation is that standard language models are
unidirectional, and this limits the choice of archi-
tectures that can be used during pre-training. For
example, in OpenAl GPT, the authors use a left-to-

BERT: Architecture

/ |)
99 Add & Norm)
* Stacks of Transformer encoders —
Forward
24 [ENCODER) Nix AN
cee Multi-Head
Attention
p . At
12 ENCODER 4 ENCODER S g
~ s Positional D
f N . ¥
. 3 ENCODER Encoding
\. / Input
() () Embedding
2 ENCODER 2 ENCODER
e _J e _J 1
{ Y f Y
1 ENCODER 1 ENCODER Inputs
N) N _J

BERTgase BERTarGE

https://arxiv.org/abs/1810.04805

BERT: Architecture

* Model output dimension: 512

ENCODER

ENCODER

ENCODER

[CLS]

Help

Prince Mayuko

512

(| ~\
Add & Norm |
Feed
Forward

A

Nx Add & Norm)

Multi-Head
Attention

—-——

.

Positional
Encoding

Input
Embedding

1

Inputs

https://arxiv.org/abs/1810.04805

brown 0.92
lazy 0.05
playful 0.03

t

BERT

Encoder #12

tt 1

Encoder #2

t 1

Encoder #1

T

—_

<CLS> The brown
X1 X2 X3

BERT is trained to uncover masked tokens.

Probing BERT Masked LM

« Making words forces BERT to use context in both directions to predict
the masked word.

Paris is the [MASK] of France.

Compute
. 0.997
pital
0.001
heart
0.000
center
0.000
centre
. 0.000
city

</> JSON Output Maximize

https://huggingface.co/bert-base-uncased

Probing BERT Masked LM

o Making words forces BERT to use context in both directions to predict
the masked word.

Today is Tuesday, so tomorrow is [MASK].

Compute
. 0.274
friday
0.211
wednesday
0.139
thursday
0.108
monday
0.077
sunday

</> JSON Output Maximize

https://huggingface.co/bert-base-uncased

BERT: Pre-training Objective (1): Masked Tokens

* Randomly mask 15%
of the tokens and train
the model to predict them.

Use the output of the 0.1% | Aardvark

masked word’s position
to predict the masked word

Possible classes:

All English words 10% Improvisation

0% | Zyzzyva

FFNN + Softmax

BERT

Randomly mask
15% of tokens

[CLS] [MASK]

Input

[CLS]

https://arxiv.org/abs/1810.04805

BERT: Pre-training Objective (1): Masked Tokens

“soe | [Galon |

the man went to the [MASK] to buy a [MASK] of milk

* Too little masking: Too expensive to train
* Too much masking: Underdefined (not enough context)

https://arxiv.org/abs/1810.04805

BERT: Pre-training Objective (2): Sentence Ordering

* Predict sentence ordering Predict likelihood

that sentence B

belongs after
99% NotNext

sentence A
* 50% correct ordering, and
50% random Incorrect ones
BERT
Tokenized
Input (CLS] [MASK] SEP]
In o ut [CLS]I [MASK] . [MASK]

]
Sentence A Sentence B

https://arxiv.org/abs/1810.04805

BERT: Pre-training Objective (2): Sentence Ordering

* Learn relationships between sentences, predict whether Sentence B Is actual
sentence that proceeds Sentence A, or a random sentence

Sentence A = The man went to the store. Sentence A = The man went to the store.
Sentence B = He bought a gallon of milk. Sentence B = Penguins are flightless.
Label = IsNextSentence Label = NotNextSentence

https://arxiv.org/abs/1810.04805

BERT: Input Representation

 Use 30,000 WordPiece vocabulary on input.

 Each token Is sum of three embeddings
« Addition to transformer encoder: sentence embedding

"

Input [CLS] ’ my dog is | cutew [SEP] he | likes || playw ##ing | [SEP]

Token

Embeddings E[CLS] Emy Edog Eis Ecute E[SEP] Ehe EIikes Eplay EMing E[SEP]
=+ = =+ L == b o . == == == ==

Segment

Embeddings EA EA EA EA EA EA EB EB EB EB EB
=+ = = L =+ =+ =+ = o= == =+

Position

Embeddings E0 El E2 E3 E4 ES E6 E7 E8 E9 E10

N ~—>{ Add & Norm }

\

a i ~
~>{ Add & Norm |

Feed
Forward

A

Multi-Head
Attention

 S—

—t

J

Positional
Encoding

1

Input
Embedding

T

Inputs

https://arxiv.org/abs/1810.04805

Training
 Trains model on unlabeled data over different pre-training tasks (self-supervised learning)
 Data: Wikipedia (2.5B words) + BookCorpus (800M words)
* Training Time: 1M steps (~40 epochs)
* Optimizer: AdamW, le-4 learning rate, linear decay
 BERT-Base: 12-layer, 768-hidden, 12-head
« BERT-Large: 24-layer, 1024-hidden, 16-head
 Trained on 4x4 or 8x8 TPUs for 4 days

https://arxiv.org/abs/1810.04805

BERT In Practice

TensorFlow: https://github.com/google-research/bert

L1 google-research / bert @ Watch> 871 %Star 196k YFork 5.2k

<> Code Issues 498 Pull requests 59 Actions Projects 0 Wiki Security Insights

TensorFlow code and pre-trained models for BERT https://arxiv.org/abs/1810.04805

nip google natural-language-processing natural-language-understanding tensorflow

PyTorch: https://github.com/huggingface/transformers

! huggingface / transformers ©OwWwatch~ 419 YruUnstar 17k ¥Fork 39k

<> Code Issues 306 Pull requests 654 Actions Projects 0 Wiki Security Insights

ey Transformers: State-of-the-art Natural Language Processing for TensorFlow 2.0 and PyTorch. https://huggingface.co/transformers
nip natural-language-processing natural-language-understanding pytorch language-model natural-language-generation tensorflow bert gpt

xinet language-models xIm transformer-x| pytorch-transformers

Fine_tuning BERT “Pretrain once, finetune many times.”

Idea: Make pre-trained model usable in downstream tasks
Initialized with pre-trained model parameters

Fine-tune model parameters using labeled data from downstream tasks

ﬁsp Mask LM Ma% LM \ MNLI MAD Start/End Spam
& *

20—
e e T - e T LT)
BERT afs = 2 2 & u . ’ BERT
|E(CL81 || E1 | | EN || E[sep]” E1' | | EM‘ | EI | EN || E[SEPI || E1, | | EM, |
i . O LT .) e LI
@m (e][[SEP] W[TOH] [TokM] [TokN][[SEP)](TOH] TokM

Masked Sentence A Masked Sentence B Question Paragraph
* *
Unlabeled Sentence A and B Pair Question Answer Pair

Pre-training Fine-Tuning

https://arxiv.org/abs/1810.04805

An Example Result: SWAG

Human Performance (88.00%)

Leaderboard Running Best

€ Submissions

BERT (Bidirectional Encoder Representations from Transfo...

Jacob Devlin, Ming-Wei Chang, Kenton Lee, Kristina Toutanova
10/11/2018

OpenAl Transformer Language Model

Original work by Alec Radford, Karthik Narasimhan, Tim Salimans, ...

10/11/2018

ESIM with ELMo
Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin
08/30/2018

ESIM with Glove
Zellers, Rowan and Bisk, Yonatan and Schwartz, Roy and Choi, Yejin
08/29/2018

A girl is going across a set of monkey bars. She

(1) jumps up across the monkey bars.
(1i) struggles onto the bars to grab her head.
(iii) gets to the end and stands on a wooden plank.

(iv) Jjumps up and does a back flip.

86.28%

77.97%

59.06%

52.45%

* Run each Premise + Ending
through BERT.

* Produce logit for each pair on
token O ([CLS])

https://arxiv.org/abs/1810.04805

Effect of Model Size

EﬁeCt Of I\/I Odel = MNLI (400k) == MRPC (3.6 k)

88

86

84

82

Dev Accuracy

80

78
50 100 150 200 250 300

¢ Blg mOdels help a IOt Transformer Params (Millions)

* Going from 110M -> 340M params helps even on datasets with 3,600 labeled
examples

 Improvements have not asymptoted

https://arxiv.org/abs/1810.04805

Why did no one think of this before?

* Concretely, why wasn’t contextual pre-training popular
before 2018 with ELMo?

 Good results on pre-training is >1,000x to 100,000 more
expensive than supervised training.

What Happened After BERT?

 ROBERTa (Liu et al., 2019)
 Drops the next sentence prediction loss!
 Trained on 10x data (the original BERT was actually under-trained)
* Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQUAD)
« Still one of the most popular models to date

SQuAD

(v1.1/2.0) MNLI-m SST-2

Model data bsz steps

RoBERTa
with BOOKS + WIKI 16GB 8K 100K 93.6/87.3 89.0 05.3
+ additional data (§3.2) 160GB 8K 100K 94.0/87.7 89.3 95.6

+ pretrain longer 160GB 8K 300K 94.4/88.7 90.0 96.1
+ pretrain even longer 160GB 8K 500K 94.6/89.4 90.2 96.4
BERT ArcE

with BOOKS + WIKI 13GB 256 M 90.9/81.8 86.6 03.7

What Happened After BERT?

 RoBERTa (Liu et al., 2019)
 Drops the next sentence prediction loss!

 Trained on 10x data (the original BERT was actually under-trained)
« Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQUAD)

« Still one of the most popular models to date

« ALBERT (Lan et al., 2020)

* Increasing model sizes by sharing model parameters across layers

* Less storage, much stronger performance but runs slower..

« ELECTRA (Clark et al., 2020)

« Two models generator and discriminator
« It provides a more efficient training method

sample

the —> [MASK] —>
chef — chef —>
cooked —> [MASK] —>
the — the —>

meal —» meal —>

Generator

typically a
s(mall MLM)

--> the —>»
chef —>»|
--> ate —>
the —>»

meal —>»

Discriminator
(ELECTRA)

—> original
—> original
—> replaced
—> original

> original

What Happened After BERT?

* Models that handle long contexts (512
tokens)

« Longformer, Big Bird, ...
« Multilingual BERT

 Trained single model on 104 languages from (a) global (b) band
Wikipedia. Shared 110k WordPiece vocabulary

N
X

i
!

« BERT extended to different domains

« ScIBERT, BioBERT, FINBERT, Clinical BERT, ..

« Making BERT smaller to use

 DistilIBERT, TinyBERT, ...

(c) dilated (d) random (e) block local

Text generation using BERT

Mask-Predict: Parallel Decoding of

BERT has a Mouth, and It Must Speak:
Conditional Masked Language Models

BERT as a Markov Random Field Language Model

Alex Wang Kyunghyun Ch‘? Marjan Ghazvininejad* Omer Levy* Yinhan Liu* Luke Zettlemoyer
New York University New York University Facebook AI Research
alexwang@nyu.edu Facebook Al Research Seattle. WA

CIFAR Azrieli Global Scholar
kyunghyun.cho@nyu.edu

Exposing the Implicit Energy Networks behind Masked
Language Models via Metropolis--Hastings

Kartik Goyal, Chris Dyer, Taylor Berg-Kirkpatrick src Der Abzug der franzsischen Kampftruppen wurde am 20. November abgeschlossen .

=0 The departure of the French combat completed completed on 20 November .
t =1 The departure of French combat troops was completed on 20 November .
t =2 The withdrawal of French combat troops was completed on November 20th .

Leveraging Pre-trained Checkpoints for Sequence
Generation Tasks

Sascha Rothe, Shashi Narayan, Aliaksei Severyn

Summary

2. Examples of self-supervision in NLP
* Word embeddings (e.g., word2vec)
* Language models (e.g., GPT)
* Masked language models (e.g., BERT)

	Slide 1: 《多模态机器学习》 第八章 多模态自监督学习
	Slide 2: Supervised pretraining on large labeled, datasets has led to successful transfer learning
	Slide 3: Supervised pretraining on large labeled, datasets has led to successful transfer learning
	Slide 4: But supervised pretraining comes at a cost…
	Slide 5: Can self-supervised learning help?
	Slide 6: Pretext Task: Classify the Rotation
	Slide 7: Pretext Task: Classify the Rotation
	Slide 8: Benefits of Self-Supervised Learning
	Slide 9: Today’s Plan
	Slide 10: Examples of Self-Supervision in NLP
	Slide 11: Examples of Self-Supervision in NLP
	Slide 12: Word Embeddings
	Slide 13: Distributional Semantics
	Slide 14: Pretext Task: Predict the Center Word
	Slide 15: Pretext Task: Predict the Context Words
	Slide 16: Case Study: word2vec
	Slide 17: Case Study: word2vec
	Slide 18: Case Study: word2vec
	Slide 19: Skip-gram with Negative Sampling
	Slide 20: Skip-gram with Negative Sampling
	Slide 21: Case Study: word2vec
	Slide 22: Case Study: word2vec
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Mismatch Between Cosine and Dot Product
	Slide 31: Case Study: word2vec
	Slide 32: Examples of Self-Supervision in NLP
	Slide 33: Why weren’t word embeddings enough?
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Probability of Upcoming Word
	Slide 43: LMs as a Marginal Distribution
	Slide 44: LMs as Implicit Joint Distribution of Language
	Slide 45: Doing Things with Language Model
	Slide 46: Doing Things with Language Model (2)
	Slide 47: Doing Things with Language Model (3)
	Slide 48: Why Should We Care About Language Modeling?
	Slide 49: You use Language Models every day!
	Slide 50: You use Language Models every day!
	Slide 51: You use Language Models every day!
	Slide 52: It Can be Misused Too …
	Slide 54: Language Models: A History
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: N-gram Language Models
	Slide 60: Pre-Computed N-Grams
	Slide 61: Pre-Computed N-Grams
	Slide 62: Pre-Computed N-Grams
	Slide 63: Pre-Computed N-Grams
	Slide 64: Generation from N-Gram Models
	Slide 65: Generation from N-Gram Models
	Slide 66: Generation from N-Gram Models
	Slide 67: Generation from N-Gram Models
	Slide 68: N-Gram Models in Practice
	Slide 69: Why is language modeling a good pretext task?
	Slide 70: Using language modeling for pretraining
	Slide 71: Case Study: Generative Pretrained Transformer (GPT)
	Slide 72: Quick Aside: Basics of Transformers
	Slide 73: Quick Aside: Basics of Transformers
	Slide 74: After Transformer …
	Slide 75
	Slide 76: Impact of Transformers
	Slide 77: Case Study: Generative Pretrained Transformer (GPT)
	Slide 78: Case Study: Generative Pretrained Transformer (GPT)
	Slide 79: Case Study: Generative Pretrained Transformer (GPT)
	Slide 80: Examples of Self-Supervision in NLP
	Slide 81: Using context from the future
	Slide 82: Masked language models (MLMs)
	Slide 83: BERT
	Slide 84: BERT
	Slide 85: BERT
	Slide 86: BERT
	Slide 87: BERT
	Slide 88: BERT (2018)
	Slide 89: BERT: Architecture
	Slide 90: BERT: Architecture
	Slide 91
	Slide 92: Probing BERT Masked LM
	Slide 93: Probing BERT Masked LM
	Slide 94: BERT: Pre-training Objective (1): Masked Tokens
	Slide 95: BERT: Pre-training Objective (1): Masked Tokens
	Slide 96: BERT: Pre-training Objective (2): Sentence Ordering
	Slide 97: BERT: Pre-training Objective (2): Sentence Ordering
	Slide 102: BERT: Input Representation
	Slide 103: Training
	Slide 104: BERT in Practice
	Slide 105: Fine-tuning BERT
	Slide 106: An Example Result: SWAG
	Slide 107: Effect of Model Size
	Slide 108: Why did no one think of this before?
	Slide 109: What Happened After BERT?
	Slide 110: What Happened After BERT?
	Slide 111: What Happened After BERT?
	Slide 112: Text generation using BERT
	Slide 113: Summary

