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Supervised pretraining on large labeled, datasets 
has led to successful transfer learning
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But supervised pretraining comes at a cost…



Can self-supervised learning help?



Pretext Task: Classify the Rotation
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Benefits of Self-Supervised Learning



Today’s Plan



Examples of Self-Supervision in NLP



Examples of Self-Supervision in NLP



Word Embeddings



Distributional Semantics



Pretext Task: Predict the Center Word



Pretext Task: Predict the Context Words



Case Study: word2vec

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf 
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Skip-gram with Negative Sampling

• Let’s see where the complexity is:

• Idea: rather than enumerating over all vocabulary, let’s sample! 

• Maximize the prob that outside word co-occurs w/ the center

• Minimize the prob of noise/random words far from the center (negatives)

log 𝑃 𝑜 𝑐) = log
exp 𝑢𝑜
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Skip-gram with Negative Sampling

• Have to be careful with sampling negative examples 

• Challenge: uniform sampling will sample a lot of stop-words that are very popular.

• Mikolov et al. proposed to sample: 𝑝 𝑤𝑖 = ൘
𝑓(𝑤𝑖)

3/4

σ𝑗 𝑓(𝑤𝑗)
3/4

• Assigns more prob to less frequent words. No theory backing, but works! 

• Idea: rather than enumerating over all vocabulary, let’s sample! 

• Maximize the prob that outside word co-occurs w/ the center

• Minimize the prob of noise/random words far from the center (negatives)

𝐽𝑁𝑆 𝜃 = − log 𝜎 𝑢𝑜
𝑇𝑣𝑐 −෍

𝑘∈{𝐾 𝑠𝑎𝑚𝑝𝑙𝑒𝑠}
log 𝜎 −𝑢𝑥

𝑇𝑣𝑐
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Relations Learned by Word2vec

A relation is defined by the vector displacement in the first column. For each 
start word in the other column, the closest displaced word is shown. 

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al.  2013]
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A relation is defined by the vector displacement in the first column. For each 
start word in the other column, the closest displaced word is shown. 

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al.  2013]



Mismatch Between Cosine and Dot Product
• Observation: there a mismatch between 

Word2Vec objective and cosine distance! 

1.Why use cosine distance instead of dot product? 
• Term frequencies affect the embedding norms. 

• Without normalization, frequent terms would 
seem more similar. 

2.Why not change W2V objective to use cos?
• ¯\_(ツ)_/¯

• It’s possible that the resulting vectors would conflate 
semantic similarity and frequency. 

𝑃 𝑜 𝑐) =
exp 𝑢𝑜

𝑇𝑣𝑐
σ𝑥∈𝑉 exp 𝑢𝑥

𝑇𝑣𝑐

distance x, y = cos 𝑣x, 𝑣y =
𝑣x
𝑇𝑣y
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[Measuring Word Significance using Distributed Representations of Words]
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Case Study: word2vec

https://arxiv.org/pdf/1408.5882 https://www.aclweb.org/anthology/N18-2084.pdf https://arxiv.org/pdf/1603.01360 
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Examples of Self-Supervision in NLP



Why weren’t word embeddings enough?



The



The cat



The cat sat



The cat sat on



The cat sat on    __?__



The cat sat on the mat.



The cat sat on the mat.



P(mat |The cat sat on the)

context  or prefixnext word



P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)

Probability of Upcoming Word 

context  or prefixnext word



LMs as a Marginal Distribution

• Directly we train models on “marginals”: context
next 
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Some 
model



LMs as Implicit Joint Distribution of 
Language 

• Though implicitly we are learning the full 
distribution over the language: 

• Remember the chain rule: P(𝑋1, … , 𝑋𝑡) = P(𝑋1)ς𝑖=1
𝑡 P(𝑋𝑖 |𝑋1, 𝑋2… ,𝑋𝑖)

• Language Modeling ≜ learning prob distribution over language sequence. 



Doing Things with Language Model 

• What is the probability of ….

• LMs assign a probability to every sentence (or any string of words). 

“I like Johns Hopkins University”

“like Hopkins I University Johns” 

P(“I like Johns Hopkins University EOS”)=10-5

P(“like Hopkins I University Johns EOS” )=10-15



Doing Things with Language Model (2)

• We can rank sentences.

• While LMs show “typicality”, this may be a proxy indicator to other 
properties: 
• Grammaticality, fluency, factuality, etc.  

P(“I like Johns Hopkins University. EOS”)    >   P(“I like John Hopkins University EOS”)  

P(“I like Johns Hopkins University. EOS”)    >   P(“University. I Johns EOS Hopkins like”) 

P(“JHU is located in Baltimore. EOS”)   >   P(“JHU is located in Virginia. EOS”) 

context
next 
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)



Doing Things with Language Model (3)

• Can also generate strings 

• Let’s say we start “Johns Hopkins is ”

• Using this prompt as initial condition, recursively sample from an LM: 

1. Sample  from P(X | “Johns Hopkins is ”)   →“located”
2. Sample  from P(X | “Johns Hopkins is located”)   → “at”
3. Sample  from P(X | “Johns Hopkins is located at”)   → “the”
4. Sample  from P(X | “Johns Hopkins is located at the”)   → “state”
5. Sample  from P(X | “Johns Hopkins is located at the state”)   → “of”
6. Sample  from P(X | “Johns Hopkins is located at the state of”)   → “Maryland”
7. Sample  from P(X | “Johns Hopkins is located at the state of Maryland”)   → “EOS”

context
next 
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)



Why Should We Care About Language 
Modeling?

• Language Modeling is an effective proxy for language understanding. 
• Effective ability to predict forthcoming words rely on understanding of 

context/prefix 

• Language Modeling is a subcomponent superset of many NLP tasks, 
especially those involving text generation: 

• Summarization 

• Machine translation 

• Spelling correction 

• Dialogue etc. 



You use Language Models every day! 
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It Can be Misused Too … 

• A lot more about 
harms later in the class. 

https://pdos.csail.mit.edu/archive/scigen/

Is this a real 
science article?



Language Models: A History

• Shannon (1950): The predictive difficulty 
(entropy) of English. 

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)
Shannon (1950) build an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its nondescendants, given its parents.

1st order approximation: 

P(mat | the cat sat on the) ≈ P(mat | the)   

55

1 element

[Prediction and Entropy of Printed English, Shanon 1950] 
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Shannon (1950) build an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its nondescendants, given its parents.

2nd order approximation: 

P(mat | the cat sat on the) ≈ P(mat | on the)  

56

2 elements

[Prediction and Entropy of Printed English, Shanon 1950] 
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P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)
Shannon (1950) build an approximate language model with word co-
occurrences. 

Markov assumptions: every node in a Bayesian network is conditionally 
independent of its nondescendants, given its parents.

3rd order approximation: 

P(mat | the cat sat on the) ≈ P(mat | sat on the)  

57

3 elements

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)
Shannon (1950) build an approximate language model with word co-
occurrences. 

Then, we can use counts of approximate conditional probability. 
Using the 3rd order approximation, we can: 

P(mat | the cat sat on the) ≈ P(mat | sat on the) =
count(“sat on themat”)

count(“on themat”)

58

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


N-gram Language Models 

• Terminology: n-gram is a chunk of n consecutive words: 
• unigrams: “cat”, “mat”, “sat”, …

• bigrams: “the cat”, “cat sat”, “sat on”, …

• trigrams: “the cat sat”, “cat sat on”, “sat on the”, …

• four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, …

• n-gram language model: 

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1) ≈ P(𝑋𝑡| 𝑋𝑡−𝑛+1, …, 𝑋𝑡−1) 

𝑛 − 1 elements

[Prediction and Entropy of Printed English, Shanon 1950] 

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf


Pre-Computed N-Grams 

Google n-gram viewer https://books.google.com/ngrams/
Data:  http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html
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Language models can 
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Generation from N-Gram Models

• You can build a simple trigram Language Model over a 1.7 million

words corpus in a few seconds on your laptop*

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the 

Otherwise, seems reasonable!

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

company 0.153 
bank  0.153 
price 0.077 
italian 0.039 
emirate 0.039
...

64



Generation from N-Gram Models

• Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

company 0.153 
bank 0.153 
price 0.077 
italian 0.039 
emirate 0.039
...
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Otherwise, seems reasonable!



Generation from N-Gram Models

• Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

of 0.308 
for 0.050 
it 0.046 
to 0.046 
is 0.031
...

condition on this

66

Otherwise, seems reasonable!



Generation from N-Gram Models

• Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price of 

get probability 
distribution

Sparsity problem: not 
much granularity in the 
probability distribution

the 0.072 
18 0.043 
oil 0.043 
its 0.036 
gold 0.018
...

condition on this

67

Otherwise, seems reasonable!



N-Gram Models in Practice

• Now we can sample from this mode: 

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price of gold per ton , while production of shoe 
lasts and shoe industry , the bank intervened just after it 
considered and rejected an imf demand to rebuild depleted 
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical! 

But quite incoherent! To improve coherence, one may consider increasing 
larger than 3-grams, but that would worsen the sparsity problem! 

68



Why is language modeling a good pretext task?



Using language modeling for pretraining



Case Study: Generative Pretrained Transformer (GPT)

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf


Quick Aside: Basics of Transformers

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


Quick Aside: Basics of Transformers

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/


After Transformer …





Impact of Transformers 
• A building block for a variety of LMs 

Decoders

Encoders

Encoder-

Decoders

❖ Examples: GPT-2, GPT-3, LaMDA

❖ Other name: causal or auto-regressive language model 

❖ Nice to generate from; can’t condition on future words

❖ Examples: BERT, RoBERTa, SciBERT.

❖ Captures bidirectional context. 

❖ Wait, how do we pretrain them?

❖ Examples: Transformer, T5, Meena

❖ What’s the best way to pretrain them?

76
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Examples of Self-Supervision in NLP



Using context from the future



Masked language models (MLMs)



BERT
Encoders



Bidirectional Encoder Representations from Transformers

BERT



Bidirectional Encoder Representations from Transformers

BERT

Like Bidirectional LSTMs (ELMo), let’s look in both directions



Bidirectional Encoder Representations from Transformers

BERT

Let’s only use Transformer Encoders, no Decoders



Bidirectional Encoder Representations from Transformers

BERT

It’s a language model that builds rich representations
via self-supervised learning (pre-training)



BERT (2018)

● Transformer based network
to learn representations of
language

● Improvements
○ Bi-directional LSTM -> Self-

attention
○ Massive data
○ Masked-LM objective



BERT: Architecture 

• Stacks of Transformer encoders”

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT: Architecture 

• Model output dimension: 512 

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


<CLS>

x1

brown dog

x3 x4

Encoder #1

Encoder #2

Encoder #12

BERT is trained to uncover masked tokens. 
BERT

The

x2
38

brown 0.92

lazy 0.05

playful 0.03



Probing BERT Masked LM

● Making words forces BERT to use context in both directions to predict 

the masked word.

92
https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased


Probing BERT Masked LM

● Making words forces BERT to use context in both directions to predict 

the masked word.

93
https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased


BERT: Pre-training Objective (1): Masked Tokens   

• Randomly mask 15% 
of the tokens and train 
the model to predict them. 

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT: Pre-training Objective (1): Masked Tokens   

the man went to the [MASK] to buy a [MASK] of milk

• Too little masking: Too expensive to train 

• Too much masking: Underdefined (not enough context)

Galonstore

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT: Pre-training Objective (2): Sentence Ordering

• Predict sentence ordering

• 50% correct ordering, and
50% random incorrect ones

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


• Learn relationships between sentences, predict whether Sentence B is actual 
sentence that proceeds Sentence A, or a random sentence

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

BERT: Pre-training Objective (2): Sentence Ordering

https://arxiv.org/abs/1810.04805


BERT: Input Representation

• Use 30,000 WordPiece vocabulary on input. 

• Each token is sum of three embeddings 

• Addition to transformer encoder: sentence embedding

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


Training 

• Trains model on unlabeled data over different pre-training tasks (self-supervised learning)

• Data: Wikipedia (2.5B words) + BookCorpus (800M words)

• Training Time: 1M steps (~40 epochs)

• Optimizer: AdamW, 1e-4 learning rate, linear decay 

• BERT-Base: 12-layer, 768-hidden, 12-head

• BERT-Large: 24-layer, 1024-hidden, 16-head

• Trained on 4x4 or 8x8 TPUs for 4 days

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


BERT in Practice



Fine-tuning BERT

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

- Idea: Make pre-trained model usable in downstream tasks

- Initialized with pre-trained model parameters

- Fine-tune model parameters using labeled data from downstream tasks

“Pretrain once, finetune many times.”

https://arxiv.org/abs/1810.04805


An Example Result: SWAG

• Run each Premise + Ending 
through BERT. 

• Produce logit for each pair on 
token 0 ([CLS])

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


Effect of Model Size

• Big models help a lot 

• Going from 110M -> 340M params helps even on datasets with 3,600 labeled 
examples 

• Improvements have not asymptoted

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805


Why did no one think of this before?

• Concretely, why wasn’t contextual pre-training popular 
before 2018 with ELMo?

• Good results on pre-training is >1,000x to 100,000 more 
expensive than supervised training.



What Happened After BERT? 

• RoBERTa (Liu et al., 2019) 

• Drops the next sentence prediction loss! 

• Trained on 10x data (the original BERT was actually under-trained)

• Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD) 

• Still one of the most popular models to date



What Happened After BERT? 
• RoBERTa (Liu et al., 2019) 

• Drops the next sentence prediction loss! 

• Trained on 10x data (the original BERT was actually under-trained)

• Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD) 

• Still one of the most popular models to date

• ALBERT (Lan et al., 2020) 
• Increasing model sizes by sharing model parameters across layers 

• Less storage, much stronger performance but runs slower..

• ELECTRA (Clark et al., 2020) 
• Two models generator and discriminator

• It provides a more efficient training method 



What Happened After BERT? 
• Models that handle long contexts ( 512 

tokens) 
• Longformer, Big Bird, … 

• Multilingual BERT 
• Trained single model on 104 languages from 

Wikipedia. Shared 110k WordPiece vocabulary

• BERT extended to different domains 
• SciBERT, BioBERT, FinBERT, ClinicalBERT, …

• Making BERT smaller to use 
• DistillBERT, TinyBERT, …



Text generation using BERT



Summary
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