
单击此处编辑母版标题样式

《多模态机器学习》

第八章 多模态自监督学习

黄文炳

中国人民大学高瓴人工智能学院

hwenbing@126.com

2024年秋季

mailto:hwenbing@126.com

Supervised pretraining on large labeled, datasets
has led to successful transfer learning

Supervised pretraining on large labeled, datasets
has led to successful transfer learning

But supervised pretraining comes at a cost…

Can self-supervised learning help?

Pretext Task: Classify the Rotation

Pretext Task: Classify the Rotation

https://arxiv.org/abs/1803.07728

https://arxiv.org/abs/1803.07728

Benefits of Self-Supervised Learning

Today’s Plan

Examples of Self-Supervision in NLP

Examples of Self-Supervision in NLP

Word Embeddings

Distributional Semantics

Pretext Task: Predict the Center Word

Pretext Task: Predict the Context Words

Case Study: word2vec

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Projection

W-2

W-1

w2

w0

w1

Input

Output

Skip-Gram

Sum and
projection

W-2

W-1

w2

w0

w1

Input

Output

CBOW

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Case Study: word2vec

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Case Study: word2vec

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Skip-gram with Negative Sampling

• Let’s see where the complexity is:

• Idea: rather than enumerating over all vocabulary, let’s sample!

• Maximize the prob that outside word co-occurs w/ the center

• Minimize the prob of noise/random words far from the center (negatives)

log 𝑃 𝑜 𝑐) = log
exp 𝑢𝑜

𝑇𝑣𝑐
σ𝑥∈𝑉 exp 𝑢𝑥

𝑇𝑣𝑐
= log exp 𝑢𝑜

𝑇𝑣𝑐 − log෍
𝑥∈𝑉

exp 𝑢𝑥
𝑇𝑣𝑐

The expensive
computation: O(|V|.d)

𝐽𝑁𝑆 𝜃 = − log 𝜎 𝑢𝑜
𝑇𝑣𝑐 −෍

𝑘∈{𝐾 𝑠𝑎𝑚𝑝𝑙𝑒𝑠}
log 𝜎 −𝑢𝑥

𝑇𝑣𝑐

bankinginto

𝑃 𝑜 𝑐)

𝑣𝑐 𝑢𝑜

Skip-gram with Negative Sampling

• Have to be careful with sampling negative examples

• Challenge: uniform sampling will sample a lot of stop-words that are very popular.

• Mikolov et al. proposed to sample: 𝑝 𝑤𝑖 = ൘
𝑓(𝑤𝑖)

3/4

σ𝑗 𝑓(𝑤𝑗)
3/4

• Assigns more prob to less frequent words. No theory backing, but works!

• Idea: rather than enumerating over all vocabulary, let’s sample!

• Maximize the prob that outside word co-occurs w/ the center

• Minimize the prob of noise/random words far from the center (negatives)

𝐽𝑁𝑆 𝜃 = − log 𝜎 𝑢𝑜
𝑇𝑣𝑐 −෍

𝑘∈{𝐾 𝑠𝑎𝑚𝑝𝑙𝑒𝑠}
log 𝜎 −𝑢𝑥

𝑇𝑣𝑐

Case Study: word2vec

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Case Study: word2vec

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

https://papers.nips.cc/paper/2013/file/9aa42b31882ec039965f3c4923ce901b-Paper.pdf

Relations Learned by Word2vec

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

Relations Learned by Word2vec

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

Relations Learned by Word2vec

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

Relations Learned by Word2vec

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

A relation is defined by the vector displacement in the first column. For each
start word in the other column, the closest displaced word is shown.

[Efficient Estimation of Word Representations in Vector Space. Mikolov et al. 2013]

Mismatch Between Cosine and Dot Product
• Observation: there a mismatch between

Word2Vec objective and cosine distance!

1.Why use cosine distance instead of dot product?
• Term frequencies affect the embedding norms.

• Without normalization, frequent terms would
seem more similar.

2.Why not change W2V objective to use cos?
• ¯_(ツ)_/¯

• It’s possible that the resulting vectors would conflate
semantic similarity and frequency.

𝑃 𝑜 𝑐) =
exp 𝑢𝑜

𝑇𝑣𝑐
σ𝑥∈𝑉 exp 𝑢𝑥

𝑇𝑣𝑐

distance x, y = cos 𝑣x, 𝑣y =
𝑣x
𝑇𝑣y

𝑣y 𝑣x

[Measuring Word Significance using Distributed Representations of Words]

frequency

n
o
rm

Case Study: word2vec

https://arxiv.org/pdf/1408.5882 https://www.aclweb.org/anthology/N18-2084.pdf https://arxiv.org/pdf/1603.01360

https://arxiv.org/pdf/1408.5882
https://www.aclweb.org/anthology/N18-2084.pdf
https://arxiv.org/pdf/1603.01360

Examples of Self-Supervision in NLP

Why weren’t word embeddings enough?

The

The cat

The cat sat

The cat sat on

The cat sat on __?__

The cat sat on the mat.

The cat sat on the mat.

P(mat |The cat sat on the)

context or prefixnext word

P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)

Probability of Upcoming Word

context or prefixnext word

LMs as a Marginal Distribution

• Directly we train models on “marginals”: context
next
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

“The cat sat on the [MASK]”

mat

table

bed

desk

chair

Prob

Some
model

LMs as Implicit Joint Distribution of
Language

• Though implicitly we are learning the full
distribution over the language:

• Remember the chain rule: P(𝑋1, … , 𝑋𝑡) = P(𝑋1)ς𝑖=1
𝑡 P(𝑋𝑖 |𝑋1, 𝑋2… ,𝑋𝑖)

• Language Modeling ≜ learning prob distribution over language sequence.

Doing Things with Language Model

• What is the probability of ….

• LMs assign a probability to every sentence (or any string of words).

“I like Johns Hopkins University”

“like Hopkins I University Johns”

P(“I like Johns Hopkins University EOS”)=10-5

P(“like Hopkins I University Johns EOS”)=10-15

Doing Things with Language Model (2)

• We can rank sentences.

• While LMs show “typicality”, this may be a proxy indicator to other
properties:
• Grammaticality, fluency, factuality, etc.

P(“I like Johns Hopkins University. EOS”) > P(“I like John Hopkins University EOS”)

P(“I like Johns Hopkins University. EOS”) > P(“University. I Johns EOS Hopkins like”)

P(“JHU is located in Baltimore. EOS”) > P(“JHU is located in Virginia. EOS”)

context
next
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Doing Things with Language Model (3)

• Can also generate strings

• Let’s say we start “Johns Hopkins is ”

• Using this prompt as initial condition, recursively sample from an LM:

1. Sample from P(X | “Johns Hopkins is ”) →“located”
2. Sample from P(X | “Johns Hopkins is located”) → “at”
3. Sample from P(X | “Johns Hopkins is located at”) → “the”
4. Sample from P(X | “Johns Hopkins is located at the”) → “state”
5. Sample from P(X | “Johns Hopkins is located at the state”) → “of”
6. Sample from P(X | “Johns Hopkins is located at the state of”) → “Maryland”
7. Sample from P(X | “Johns Hopkins is located at the state of Maryland”) → “EOS”

context
next
word

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1)

Why Should We Care About Language
Modeling?

• Language Modeling is an effective proxy for language understanding.
• Effective ability to predict forthcoming words rely on understanding of

context/prefix

• Language Modeling is a subcomponent superset of many NLP tasks,
especially those involving text generation:

• Summarization

• Machine translation

• Spelling correction

• Dialogue etc.

You use Language Models every day!

You use Language Models every day!

You use Language Models every day!

It Can be Misused Too …

• A lot more about
harms later in the class.

https://pdos.csail.mit.edu/archive/scigen/

Is this a real
science article?

Language Models: A History

• Shannon (1950): The predictive difficulty
(entropy) of English.

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)
Shannon (1950) build an approximate language model with word co-
occurrences.

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

1st order approximation:

P(mat | the cat sat on the) ≈ P(mat | the)

55

1 element

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)
Shannon (1950) build an approximate language model with word co-
occurrences.

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

2nd order approximation:

P(mat | the cat sat on the) ≈ P(mat | on the)

56

2 elements

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)
Shannon (1950) build an approximate language model with word co-
occurrences.

Markov assumptions: every node in a Bayesian network is conditionally
independent of its nondescendants, given its parents.

3rd order approximation:

P(mat | the cat sat on the) ≈ P(mat | sat on the)

57

3 elements

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

P(𝑋𝑡 | 𝑋1, …, 𝑋𝑡−1)
Shannon (1950) build an approximate language model with word co-
occurrences.

Then, we can use counts of approximate conditional probability.
Using the 3rd order approximation, we can:

P(mat | the cat sat on the) ≈ P(mat | sat on the) =
count(“sat on themat”)

count(“on themat”)

58

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

N-gram Language Models

• Terminology: n-gram is a chunk of n consecutive words:
• unigrams: “cat”, “mat”, “sat”, …

• bigrams: “the cat”, “cat sat”, “sat on”, …

• trigrams: “the cat sat”, “cat sat on”, “sat on the”, …

• four-grams: “the cat sat on”, “cat sat on the”, “sat on the mat”, …

• n-gram language model:

P(𝑋𝑡| 𝑋1, …, 𝑋𝑡−1) ≈ P(𝑋𝑡| 𝑋𝑡−𝑛+1, …, 𝑋𝑡−1)

𝑛 − 1 elements

[Prediction and Entropy of Printed English, Shanon 1950]

https://www.princeton.edu/~wbialek/rome/refs/shannon_51.pdf

Pre-Computed N-Grams

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams

Language models can
tell us something

about us …

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Pre-Computed N-Grams

Language models can
tell us something

about us …

Google n-gram viewer https://books.google.com/ngrams/
Data: http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

https://books.google.com/ngrams/
http://storage.googleapis.com/books/ngrams/books/datasetsv2.html

Generation from N-Gram Models

• You can build a simple trigram Language Model over a 1.7 million

words corpus in a few seconds on your laptop*

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the

Otherwise, seems reasonable!

get probability
distribution

Sparsity problem: not
much granularity in the
probability distribution

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039
...

64

Generation from N-Gram Models

• Now we can sample from this mode:

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the

get probability
distribution

Sparsity problem: not
much granularity in the
probability distribution

company 0.153
bank 0.153
price 0.077
italian 0.039
emirate 0.039
...

65

Otherwise, seems reasonable!

Generation from N-Gram Models

• Now we can sample from this mode:

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price

get probability
distribution

Sparsity problem: not
much granularity in the
probability distribution

of 0.308
for 0.050
it 0.046
to 0.046
is 0.031
...

condition on this

66

Otherwise, seems reasonable!

Generation from N-Gram Models

• Now we can sample from this mode:

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price of

get probability
distribution

Sparsity problem: not
much granularity in the
probability distribution

the 0.072
18 0.043
oil 0.043
its 0.036
gold 0.018
...

condition on this

67

Otherwise, seems reasonable!

N-Gram Models in Practice

• Now we can sample from this mode:

* Try for yourself: https://nlpforhackers.io/language-models/ [adopted from Chris Manning]

today the price of gold per ton , while production of shoe
lasts and shoe industry , the bank intervened just after it
considered and rejected an imf demand to rebuild depleted
european stocks , sept 30 end primary 76 cts a share .

Surprisingly grammatical!

But quite incoherent! To improve coherence, one may consider increasing
larger than 3-grams, but that would worsen the sparsity problem!

68

Why is language modeling a good pretext task?

Using language modeling for pretraining

Case Study: Generative Pretrained Transformer (GPT)

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

Quick Aside: Basics of Transformers

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

Quick Aside: Basics of Transformers

https://jalammar.github.io/illustrated-transformer/

https://jalammar.github.io/illustrated-transformer/

After Transformer …

Impact of Transformers
• A building block for a variety of LMs

Decoders

Encoders

Encoder-

Decoders

❖ Examples: GPT-2, GPT-3, LaMDA

❖ Other name: causal or auto-regressive language model

❖ Nice to generate from; can’t condition on future words

❖ Examples: BERT, RoBERTa, SciBERT.

❖ Captures bidirectional context.

❖ Wait, how do we pretrain them?

❖ Examples: Transformer, T5, Meena

❖ What’s the best way to pretrain them?

76

Case Study: Generative Pretrained Transformer (GPT)

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

Case Study: Generative Pretrained Transformer (GPT)

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

Case Study: Generative Pretrained Transformer (GPT)

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

https://s3-us-west-2.amazonaws.com/openai-assets/researchcovers/languageunsupervised/language_understanding_paper.pdf

Examples of Self-Supervision in NLP

Using context from the future

Masked language models (MLMs)

BERT
Encoders

Bidirectional Encoder Representations from Transformers

BERT

Bidirectional Encoder Representations from Transformers

BERT

Like Bidirectional LSTMs (ELMo), let’s look in both directions

Bidirectional Encoder Representations from Transformers

BERT

Let’s only use Transformer Encoders, no Decoders

Bidirectional Encoder Representations from Transformers

BERT

It’s a language model that builds rich representations
via self-supervised learning (pre-training)

BERT (2018)

● Transformer based network
to learn representations of
language

● Improvements
○ Bi-directional LSTM -> Self-

attention
○ Massive data
○ Masked-LM objective

BERT: Architecture

• Stacks of Transformer encoders”

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

BERT: Architecture

• Model output dimension: 512

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

<CLS>

x1

brown dog

x3 x4

Encoder #1

Encoder #2

Encoder #12

BERT is trained to uncover masked tokens.
BERT

The

x2
38

brown 0.92

lazy 0.05

playful 0.03

Probing BERT Masked LM

● Making words forces BERT to use context in both directions to predict

the masked word.

92
https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased

Probing BERT Masked LM

● Making words forces BERT to use context in both directions to predict

the masked word.

93
https://huggingface.co/bert-base-uncased

https://huggingface.co/bert-base-uncased

BERT: Pre-training Objective (1): Masked Tokens

• Randomly mask 15%
of the tokens and train
the model to predict them.

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

BERT: Pre-training Objective (1): Masked Tokens

the man went to the [MASK] to buy a [MASK] of milk

• Too little masking: Too expensive to train

• Too much masking: Underdefined (not enough context)

Galonstore

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

BERT: Pre-training Objective (2): Sentence Ordering

• Predict sentence ordering

• 50% correct ordering, and
50% random incorrect ones

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

• Learn relationships between sentences, predict whether Sentence B is actual
sentence that proceeds Sentence A, or a random sentence

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

BERT: Pre-training Objective (2): Sentence Ordering

https://arxiv.org/abs/1810.04805

BERT: Input Representation

• Use 30,000 WordPiece vocabulary on input.

• Each token is sum of three embeddings

• Addition to transformer encoder: sentence embedding

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

Training

• Trains model on unlabeled data over different pre-training tasks (self-supervised learning)

• Data: Wikipedia (2.5B words) + BookCorpus (800M words)

• Training Time: 1M steps (~40 epochs)

• Optimizer: AdamW, 1e-4 learning rate, linear decay

• BERT-Base: 12-layer, 768-hidden, 12-head

• BERT-Large: 24-layer, 1024-hidden, 16-head

• Trained on 4x4 or 8x8 TPUs for 4 days

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

BERT in Practice

Fine-tuning BERT

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

- Idea: Make pre-trained model usable in downstream tasks

- Initialized with pre-trained model parameters

- Fine-tune model parameters using labeled data from downstream tasks

“Pretrain once, finetune many times.”

https://arxiv.org/abs/1810.04805

An Example Result: SWAG

• Run each Premise + Ending
through BERT.

• Produce logit for each pair on
token 0 ([CLS])

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

Effect of Model Size

• Big models help a lot

• Going from 110M -> 340M params helps even on datasets with 3,600 labeled
examples

• Improvements have not asymptoted

[BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding, Devlin et al. 2018]

https://arxiv.org/abs/1810.04805

Why did no one think of this before?

• Concretely, why wasn’t contextual pre-training popular
before 2018 with ELMo?

• Good results on pre-training is >1,000x to 100,000 more
expensive than supervised training.

What Happened After BERT?

• RoBERTa (Liu et al., 2019)

• Drops the next sentence prediction loss!

• Trained on 10x data (the original BERT was actually under-trained)

• Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)

• Still one of the most popular models to date

What Happened After BERT?
• RoBERTa (Liu et al., 2019)

• Drops the next sentence prediction loss!

• Trained on 10x data (the original BERT was actually under-trained)

• Much stronger performance than BERT (e.g., 94.6 vs 90.9 on SQuAD)

• Still one of the most popular models to date

• ALBERT (Lan et al., 2020)
• Increasing model sizes by sharing model parameters across layers

• Less storage, much stronger performance but runs slower..

• ELECTRA (Clark et al., 2020)
• Two models generator and discriminator

• It provides a more efficient training method

What Happened After BERT?
• Models that handle long contexts (512

tokens)
• Longformer, Big Bird, …

• Multilingual BERT
• Trained single model on 104 languages from

Wikipedia. Shared 110k WordPiece vocabulary

• BERT extended to different domains
• SciBERT, BioBERT, FinBERT, ClinicalBERT, …

• Making BERT smaller to use
• DistillBERT, TinyBERT, …

Text generation using BERT

Summary

	Slide 1: 《多模态机器学习》 第八章 多模态自监督学习
	Slide 2: Supervised pretraining on large labeled, datasets has led to successful transfer learning
	Slide 3: Supervised pretraining on large labeled, datasets has led to successful transfer learning
	Slide 4: But supervised pretraining comes at a cost…
	Slide 5: Can self-supervised learning help?
	Slide 6: Pretext Task: Classify the Rotation
	Slide 7: Pretext Task: Classify the Rotation
	Slide 8: Benefits of Self-Supervised Learning
	Slide 9: Today’s Plan
	Slide 10: Examples of Self-Supervision in NLP
	Slide 11: Examples of Self-Supervision in NLP
	Slide 12: Word Embeddings
	Slide 13: Distributional Semantics
	Slide 14: Pretext Task: Predict the Center Word
	Slide 15: Pretext Task: Predict the Context Words
	Slide 16: Case Study: word2vec
	Slide 17: Case Study: word2vec
	Slide 18: Case Study: word2vec
	Slide 19: Skip-gram with Negative Sampling
	Slide 20: Skip-gram with Negative Sampling
	Slide 21: Case Study: word2vec
	Slide 22: Case Study: word2vec
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30: Mismatch Between Cosine and Dot Product
	Slide 31: Case Study: word2vec
	Slide 32: Examples of Self-Supervision in NLP
	Slide 33: Why weren’t word embeddings enough?
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42: Probability of Upcoming Word
	Slide 43: LMs as a Marginal Distribution
	Slide 44: LMs as Implicit Joint Distribution of Language
	Slide 45: Doing Things with Language Model
	Slide 46: Doing Things with Language Model (2)
	Slide 47: Doing Things with Language Model (3)
	Slide 48: Why Should We Care About Language Modeling?
	Slide 49: You use Language Models every day!
	Slide 50: You use Language Models every day!
	Slide 51: You use Language Models every day!
	Slide 52: It Can be Misused Too …
	Slide 54: Language Models: A History
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59: N-gram Language Models
	Slide 60: Pre-Computed N-Grams
	Slide 61: Pre-Computed N-Grams
	Slide 62: Pre-Computed N-Grams
	Slide 63: Pre-Computed N-Grams
	Slide 64: Generation from N-Gram Models
	Slide 65: Generation from N-Gram Models
	Slide 66: Generation from N-Gram Models
	Slide 67: Generation from N-Gram Models
	Slide 68: N-Gram Models in Practice
	Slide 69: Why is language modeling a good pretext task?
	Slide 70: Using language modeling for pretraining
	Slide 71: Case Study: Generative Pretrained Transformer (GPT)
	Slide 72: Quick Aside: Basics of Transformers
	Slide 73: Quick Aside: Basics of Transformers
	Slide 74: After Transformer …
	Slide 75
	Slide 76: Impact of Transformers
	Slide 77: Case Study: Generative Pretrained Transformer (GPT)
	Slide 78: Case Study: Generative Pretrained Transformer (GPT)
	Slide 79: Case Study: Generative Pretrained Transformer (GPT)
	Slide 80: Examples of Self-Supervision in NLP
	Slide 81: Using context from the future
	Slide 82: Masked language models (MLMs)
	Slide 83: BERT
	Slide 84: BERT
	Slide 85: BERT
	Slide 86: BERT
	Slide 87: BERT
	Slide 88: BERT (2018)
	Slide 89: BERT: Architecture
	Slide 90: BERT: Architecture
	Slide 91
	Slide 92: Probing BERT Masked LM
	Slide 93: Probing BERT Masked LM
	Slide 94: BERT: Pre-training Objective (1): Masked Tokens
	Slide 95: BERT: Pre-training Objective (1): Masked Tokens
	Slide 96: BERT: Pre-training Objective (2): Sentence Ordering
	Slide 97: BERT: Pre-training Objective (2): Sentence Ordering
	Slide 102: BERT: Input Representation
	Slide 103: Training
	Slide 104: BERT in Practice
	Slide 105: Fine-tuning BERT
	Slide 106: An Example Result: SWAG
	Slide 107: Effect of Model Size
	Slide 108: Why did no one think of this before?
	Slide 109: What Happened After BERT?
	Slide 110: What Happened After BERT?
	Slide 111: What Happened After BERT?
	Slide 112: Text generation using BERT
	Slide 113: Summary

