
Final Report: Human-machine Collaborated Economic
Development Measurement via Satellite Imagery

1Shukai Gong (龚舒凯) 1Churui Zheng (郑楚睿) 1Hang Xie (谢航)
1Applied Economics & Data Science, School of Applied Economics

Renmin University of China

December 27, 2024

1 / 27

Outline

Background and Motivation

Our Achievement

Model Pipeline
Review of Stage 1
Stage 2: Generation and Aggregation of POG
Stage 3: Training a development-level scoring model

Room for improvement

2 / 27

Background and Motivation

▶ Reliable measures of economic activity are hard to collect in developing countries,
limiting economic research as well as policy analysis.

▶ Can we predict fine-grained economic development level using only satellite
imagery and a few human annotation?

▶ Our Task: Evaluate the development level of a region in China using this
method.

We have reproduced the method in A human-machine collaborative approach
measures economic development using satellite imagery published by Nature
Communications.

3 / 27

Our Achievement

▶ Constructed a light-weighted, semi-automatic and highly-parallelized pipeline
that realizes the annotation of the satellite data and the training of the model.

▶ Successfully applied the scoring model (from North Korea, Laos, ...) to a larger
and more diverse terrain.

▶ Achieved a more fine-grained development level evaluation metric than existing
metrics. (Population density map, VIIRS Map)

▶ Redesigned the training method (learning task, loss function, backbone encoder)
to fit for our data.

▶ Exhibited good generalization performance on unseen satellite data (e.g.
coastal regions).

4 / 27

Review of Stage 1

Our place of interest: Sichuan Province, China

▶ Diverse Terrain: Basins, Mountains and
Plateaus. Unbalanced population density and
economic development level.

▶ Data Inaccessibility: Statistics for remote or
inaccessible areas are few and old.

▶ Scaling Law: Measuring the economic level of
a large area with a small amount of
high-quality annotated data.

Figure 1: Population distribution
of Sichuan Province

5 / 27

Review of Stage 1: Dataset

Data Collection & Processing: Sentinel-2 L2A
high-resolution satellite images of Sichuan
▶ Web-Crawling: through Planetary

Computer API powered by Microsoft.
▶ Crawled GeoTiff images of any granule with

any cloud cover, during any time period by
Python multiprocessing/threading/serial
downloading. Figure 2: Illustration of

Sentinel-2 granules

6 / 27

Review of Stage 1: Dataset

▶ Our dataset: 60× 1024 = 61440 satellite images covering 60 granules of Sichuan
Province.
▶ For each granule in Sichuan, we crawl the best image (lowest cloud cover, lowest

blank ratio, from 2020-2024) and segment it into 32× 32 patches.
▶ 900 images have annotations like [pUrban, pRural, pMountain, pHighland].

▶ Test of web-crawling performance: Tested on granule 51RUQ, 2020-2023, cloud
cover <1%

Method Mean Std
Python Threading 22.11 4.84
Python Multiprocessing 27.21 3.51
Python Serial 39.78 5.94

▶ Test of image segmentation performance: Tested on 41 images
Method Time usage
Python Threading 9.30
MPI (np = 4) 6.26

7 / 27

Review of Stage 1
We first train a classifier using 900 annotated images to classify images into four
categories (Urban, Rural, Mountain, Highland), and then do within-category clustering:

Urban

Mountain

Rural

Highland

Cluster_0 Cluster_2Cluster_1

Cluster_0 Cluster_2Cluster_1, Cluster_4, Cluster_5 Cluster_3

Cluster_0 Cluster_3Cluster_2Cluster_1

Cluster_0 Cluster_3Cluster_2Cluster_1

Figure 3: Category classification and within-category clustering

8 / 27

Review of Stage 1
Within-category Clustering: K = 3 for urban, K = 11 for rural, K = 8 for mountain,
and set K = 1 for highland.

Figure 4: Silhoutte score of each category for K ∈ [3, 20]. 9 / 27

Review of Stage 1

What we have done before midterm:
▶ Stage 1: i) Obtain satellite imagery of

Sichuan ii) Image Classification iii)
Within-category clustering

What we have done now:
▶ Stage 2: POG annotation and ensemble.
▶ Stage 3: Training a development-level scoring

model based on our aggregated POG.
Figure 5: The proposed 3-Stage
model

10 / 27

Stage 2: Generation of POG
We have obtained 23 clusters from Stage 1 (|CU| = 3, |CR| = 11, |CM| = 8, |CH| = 1).
We generate POG in a LLM-assisted way. At each round of POG generation, we

1. Randomly sample 3 images from each cluster, i.e. 23× 3 images in total.
2. Design a text prompt to demand VLLM to score those images on a scale from

0-100.
3. Asynchronously and concurrently send the images and prompts to VLLM via

API. For each image, we require VLLM to generate 3 responses.
4. Average the API responses to get the mean score for each image.
5. Average the scores of images from each cluster to get the mean score for each

cluster.
6. Rank the clusters.

Cluster A = Cluster B if |ScoreA − ScoreB| ≤ 10

Cluster A > Cluster B if ScoreA − ScoreB > 10

11 / 27

Stage 2: Generation of POG

We run 10 rounds of POG generation, using 4 different prompts:
▶“你是一位卫星遥感图像专家，以下是四川省不同地区的卫星图像，我要求你根
据每张图片所代表地区的经济发展水平，对这张图片进行打分...”

▶“你是一个四川本地人，以下是你的家乡不同地区的卫星图像，我要求你根据每
张图片所代表地区的经济发展水平，对这张图片进行打分...”

▶“你是一位发展经济学教授，以下是四川省不同地区的卫星图像，我要求你根据
你对四川省经济开发现状和对发展经济学的理解，根据每张图片所代表地区的
经济发展水平，对这张图片进行打分...”

▶“You are an Economics student from the U.S., I want you to score the
development level of the following satellite images based on your common sense...”

VLLM: Qwen2-VL-72B-Instruct, deepseek-vl2

12 / 27

Stage 2: Generation of POG

We have discovered that running 3-5 rounds at a time will be more efficient given the
rate limit of most APIs.

runs Total Time Average Time per Run
1 9.98 9.98
3 27.84 9.28
5 57.24 11.45
10 353.81 35.38

Table 1: POG generation efficiency under different settings

13 / 27

Stage 2: Aggregation of POG
We follow the steps in the original paper with minor modifications to aggregate POGs

1. Convert discrete rankings Ri = (rank(c1), · · · , rank(c|C|) into continous ranking vector
Ri = (r1, · · · , r|C|) via

ri = rank(ci) +
1

2

∑
c∈C\{ci}

1(if rank(c)=rank(ci), ci ∈ C (1)

where C is the set of all clusters. E.g. the ranking of (1, 2, 3, 3) is converted into
(1, 2, 3.5, 3.5)

2. Initialize the aggregated ranking vector as R∗ =
1

10

10∑
i=1

Ri, and repeat the following steps

until convergence (ϵ < 10−6):
2.1 αm = 1− exp

(
−∥Rm−R∗∥2

σ2

)
, m = 1, 2, · · · ,M ，wm = αm

M∑
i=1

αi

，

ϵ = ∥R∗ −
m∑

i=1

wmRm∥2

3. Conduct 1D K-means clustering on R∗ to get POG.
14 / 27

Stage 2: Aggregation of POG
We accelerate the aggregation of POG by matrix multiplication, which compute
αm,wm, ∥R∗ −

m∑
i=1

wmRm∥ in parallel.

of POGs # of Total Clusters Cluster Size Matrix Ensemble Loop Ensemble
10 22 7 0.038 0.005

10000 22 7 0.048 0.384
100000 22 7 0.146 3.784

of POGs # of Total Clusters Cluster Size Matrix Ensemble Loop Ensemble
10 22 7 0.038 0.005
10 1000 7 0.084 0.069
10 10000 7 0.184 1.914

of POGs # of Total Clusters Cluster Size Matrix Ensemble Loop Ensemble
10 10000 7 0.084 0.190
10 10000 1000 0.188 0.324
10 10000 5000 0.348 0.598

Table 2: POG aggregation efficiency under different settings 15 / 27

Stage 2: Aggregation of POG

Illustration of POG aggregation

R∗ = (3.8, 3.35, 3.25, 2.45, 3.05, 5.1, 2.75, 3.75, 5.25, 4.75, 5.75,

10.7, 10.2, 10.1, 7.6, 8.5, 7.7, 9.65, 10.15, 10.8, 8.7, 9.45)

Aggregated POG:

3 = 4 = 6 > 0 = 1 = 2 = 7 > 5 = 8 = 9 = 10 > 14 = 16

> 15 = 20 = 21 > 11 = 12 = 13 = 17 = 18 = 19

16 / 27

Stage 2: Aggregation of POG

Our final aggregated POG for training is

0 > 1 > 2︸ ︷︷ ︸
Urban

> 4 = 3 = 6 > 9 = 12 > 17 = 11 > 13 = 10︸ ︷︷ ︸
Rural

> 7 = 20 = 19 = 21 = 5 = 14 = 15 = 16 = 18 = 8 = 22︸ ︷︷ ︸
Mountain and Highland

17 / 27

Stage 3: Training development-level scoring model

We simplify the training methods in the original paper:
▶ Assign pseudo labels based on the aggregated POG before.
▶ Training: Optimizing through Multi-task Learning.

L = Lreg + λLlinear

where Lreg refers to the regression loss between model outputs and pseudo labels,
and Llinear compares the model’s prediction for a linear combination of two images
with a weighted average of the model’s predictions for each individual image.

▶ Evaluation metrics: If |output − pseudo label| < ϵ，the output is considered
”correct”. (We set ϵ = 0.07)

18 / 27

Stage 3: Training a development-level scoring model
The workflow of Lreg and Llinear is shown in Figure 6.
▶ Backbone Encoder: ResNet18
▶ Loss function for Lreg and Llinear: L1-Loss
▶ Trained on 2 NVIDIA GeForce RTX 3090 with nn.DataParallel for 4 hours.

Encoder

0.73 0.82

0.64 0.50

0.99 0.63

0.17 0.00

Encoder

0.690.73

Figure 6: The workflow of scoring model

19 / 27

Stage 3: Training a development-level scoring model

As shown in Figure 10, we need to put together all 32× 32 small chunks (343× 343)
to recover the original satellite image (10976× 10976)

0.40.2

0.5 0.7

Figure 7: Putting together all 1024 chunks to recover the original satellite image

20 / 27

Stage 3: Training a development-level scoring model
This task is suitable for parallel computing with GPUs. We use SourceModule in
PyCuda to write GPU kernel functions. The design is as follows:
▶ Thread: Each thread is responsible for filling the scores into their corresponding

343 × 343 matrices.
▶ Thread block: Each thread block is responsible for concatenating a large image,

containing 32 × 32 small blocks.
▶ Grid: Each grid contains n thread blocks, which are responsible for putting

together n 10976× 10976 large images.

Figure 8: The development-level map (Left) and satellite image (Right) of 48RVU(成都) 21 / 27

Stage 3: Training a development-level scoring model

of images Total Time Averaged Image I/O time Average Concatenation Time
Serial 1 39.60 2.27 37.33

6 235.24 2.13 37.08
15 591.71 2.22 37.23

GPU Parallel 1 2.58 2.23 0.35
6 13.97 2.13 0.2
15 34.27 2.10 0.18

Table 3: Comparison between serial and parallel image concatenation

22 / 27

Stage 3: Training a development-level scoring model

Figure 9: The development-level map of the whole Sichuan province 23 / 27

Stage 3: Training a development-level scoring model

Generalizability: we also deploy our model on 51RUQ(上海), 50RQP(福州), and
50QMM(潮汕). The results indicate that our model exhibits good generalization
performance even on unseen terrain (such as waters).

Figure 10: The development-level map of Shanghai(Left), Fuzhou(Middle) and
Chaoshan(Right)

24 / 27

Stage 3: Training a development-level scoring model

Feasibility Evaluation: We compute the cor-
relation between our development-level scoring
model and the VIIRS night light map (2023).

Granule Region Pearson Correlation Spearman Correlation
48RVU 成都 0.18 0.16
48RTR 西昌 0.29 0.21
47RQK 攀枝花 0.42 0.35
51RUQ 上海 0.56 0.52
50RQP 福州 0.27 0.26
50QMM 潮汕 0.45 0.61

48RVU
(Chengdu)

48RTR
(Xichang)

47RQK
(Panzhihua)

51RUQ
(Shanghai)

25 / 27

Summary

Room for improvement:
▶ Hallucination of the trained model still exists. (Between urban & highland)
▶ Error in initial classification and annotation (Stage 1).
▶ More complete feasibility evaluation.

26 / 27

Thank you!

27 / 27

	Background and Motivation
	Our Achievement
	Model Pipeline
	Review of Stage 1
	Stage 2: Generation and Aggregation of POG
	Stage 3: Training a development-level scoring model

	Room for improvement

