Lecture 1: Introduction to Machine Learning Shukai Gong

1 Typical Paradigms of ML

- Labeled Data + Discriminative Model: Face recognition
- Unlabeled Data + Discriminative Model: Face clustering
- Labeled Data + Generative Model: Face interpolation / Conditional Manipulation
- Unlabeled Data + Generative Model: Face random generation

2. Key Factors in ML:

- 1. Computable objective functions (quantitative evaluation metric)
- 2. Computable data representation (vectors, matrices, etc.)
- 3. Inference models taking data representation as input.
- 4. Effective and efficient learning algorithms.

3. Aims in ML:

- 1. Optimize a performance criterion using data or past experience
- 2. Generalize to unseen data

2 Data Representation

Three common practices of data representation:

- 1. Element-wise Representation: $\boldsymbol{x} = [x_i]$ where $\boldsymbol{a}_i \in \mathbb{R}^N, \boldsymbol{A} = [a_{ij}]$
- 2. Column-wise Representation: $A = [a_1, a_2, \cdots, a_N]$ where $a_i \in \mathbb{R}^N$
- 3. **One-hot:** Discrete data can be represented as $\boldsymbol{x} = [0, \dots, 1, \dots, 0]$

2.1 Space

- 1. Sample Space: \mathcal{X} where $x \in \mathcal{X}$
- 2. Metric Space: $(\mathcal{X}, d_{\mathcal{X}})$ where $d_{\mathcal{X}}$ is a distance of metric of samples.
- 3. Probability Measure Space: $\mathbb{P}_{\mathcal{X}}$ satisfying

$$\mathbb{P}_{\mathcal{X}} = \{ \mu : \int_{x \in \mathcal{X}} \mu(x) \mathrm{d}x = 1, \mu(x) \ge 0, \forall x \in \mathcal{X} \}$$

- $\mu \in \mathbb{P}_{\mathcal{X}}$ is a probability measure on \mathcal{X}
- 4. Metric-Measure Space: $\mathcal{X}_{d_{\mathcal{X}},\mu_{\mathcal{X}}} := (\mathcal{X}, d_{\mathcal{X}}, \mu_{\mathcal{X}})$

One example of MM-space can be a 2-dimensional space with a Gaussian distribution, where $\mathcal{X} = \mathbb{R}^2$, $d_{\mathcal{X}}$ is the Euclidean distance, and $\mu_{\mathcal{X}}$ is the Gaussian distribution.

- Most ML tasks correspond to reconstruct the MM-space from observed data: Given $\{x\} \subset \mathcal{X}$
 - Data representation: Find a map $f: \mathcal{X} \to \mathcal{Z}_{d_z, \mu_z}$
 - Metric learning: Learn a metric $d_{\mathcal{X}}$
 - Estimate $\mu_{\mathcal{X}}$: Learn a density estimator $\hat{\mu}_{\mathcal{X}}$
- Vectorized data representation often leads to a good metric space Euclidean space.

3 A Basic Paradigm of ML

As preparation, we have

- Data: $X = \{x_i\}_{i=1}^N \subset \mathcal{X}$, optionally with labels $Y = \{y_i\}_{i=1}^N \subset \mathcal{Y}$
- A loss function: $L : \mathcal{X} \times \mathcal{Y} \mapsto \mathbb{R}$
- A model with parameter M_{θ}

Our **training task** is to

$$\min_{\theta \in \Omega} \sum_{i=1}^{N} L(M_{\theta}(\boldsymbol{x}_i), y_i)$$

where $f(\theta) = \sum_{i=1}^{N} L(M_{\theta}(\boldsymbol{x}_i), y_i)$ is the **objective function** of the variable θ and Ω is the **feasible domain**.

(Ex.)As preparation, we have

- Data: $x_n \in \mathbb{R}^2$: the sale and the revenue of the n-th company, $y_n \in \mathbb{R}$: the stock value of the n-th company
- Model: A linear regression model with Gaussian noise

$$oldsymbol{y} = oldsymbol{x}^ op heta + oldsymbol{\epsilon}, \quad oldsymbol{\epsilon} \sim \mathcal{N}(0, \sigma^2 oldsymbol{I})$$

• Loss function: MSE: $L(\boldsymbol{y}, \hat{\boldsymbol{y}}) = \|\boldsymbol{y} - \hat{\boldsymbol{y}}\|_2^2$

Our training task is to

$$\min_{\boldsymbol{\theta} \in \boldsymbol{\Omega}} \sum_{i=1}^N \| \boldsymbol{y}_i - \boldsymbol{x}_i^\top \boldsymbol{\theta} \|_2^2$$

3.1 Keypoints of the Learning Problem

- 1. Data Processing: data processing is conducted to suppress the unfairness of features.
 - Shifting and Scaling: Standardize x into $\frac{x-\mu}{\sigma}$. The basic idea is to make each feature has zero mean and unit variance.
 - Whitening: Given $X = [x_1, \dots, x_D]$ with D features, and the estimate covariance matrix measuring the covariance between feature *i* and *j* is:

$$\hat{\boldsymbol{\Sigma}} = \frac{1}{N-1} (\boldsymbol{X} - \boldsymbol{1}_{\boldsymbol{N}} \hat{\boldsymbol{\mu}}^{\top})^{\top} (\boldsymbol{X} - \boldsymbol{1}_{\boldsymbol{N}} \hat{\boldsymbol{\mu}}^{\top})$$

where $\mathbf{1}_N$ is a N-dimensional vector with all elements equal to 1. Then we can whiten the data by

$$ilde{oldsymbol{X}} = (oldsymbol{X} - oldsymbol{1}_{oldsymbol{N}} \hat{oldsymbol{\mu}}^{ op}) \hat{oldsymbol{\Sigma}}^{-rac{1}{2}}$$

The basic idea is to make each feature zero-mean, unit-variance and uncorrelated to each other.

2. Evaluation:

- Loss Function: $MSE = |y \hat{y}|^2, MAE = |y \hat{y}|$
- Cross Validation:

	All Data					
	Training data					Test data
	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	>
	TOICE	1010 2	1010.0	1010.4	T OIU S	
Split 1	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Split 2	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
						Finding Parameters
Split 3	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Split 4	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5	
Split 5	Fold 1	Fold 2	Fold 3	Fold 4	Fold 5)
					1	
	Final evaluation					Test data

3. Training: Model Selection

Akaike Information Criterion(AIC)

To estimate the relative amount of information **lost** by a given model, and achieve a trade-off between **good-of-fitness** and **model simplicity**. Suppose that we have a statistical model of some data \boldsymbol{X} . Let K be the number of model parameters and $\hat{L} = \max P(\boldsymbol{X}|\hat{\boldsymbol{\theta}})$ be the maximum likelihood for the model, then

$$AIC = 2K - 2\log \hat{L}$$

Given M models and their AIC values $\{AIC_m\}_{m=1}^M$, the relative likelihood of model m is $\exp\left(\frac{AIC_{\min} - AIC_m}{2}\right)$. The smaller the distance between AIC_{\min} and AIC_m , the less information is lost by the model m compared to the best model.

Bayesian Information Criterion(BIC)

Suppose that we have a statistical model of some data X. Let K be the number of model parameters, N be the number of data points, and $\hat{L} = \max P(X|\hat{\theta})$ be the maximum likelihood for the model, then

$$BIC = K \log N - 2 \log L$$

For example, in Polynomial Regression, K = polynomial order, and the N = data points size, $L = \frac{1}{(2\pi)^{\frac{n}{2}}\sigma^n} \exp\left(-\frac{\|\boldsymbol{y}-\boldsymbol{X}\boldsymbol{w}\|_2^2}{2\sigma^2}\right)$ (Normally we omit the coefficients to make it clearer)