
Lecture 1: Introduction to Machine Learning
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1 Typical Paradigms of ML

• Labeled Data + Discriminative Model: Face recognition

• Unlabeled Data + Discriminative Model: Face clustering

• Labeled Data + Generative Model: Face interpolation / Conditional Manipulation

• Unlabeled Data + Generative Model: Face random generation

2. Key Factors in ML:

1. Computable objective functions (quantitative evaluation metric)

2. Computable data representation (vectors, matrices, etc.)

3. Inference models taking data representation as input.

4. Effective and efficient learning algorithms.

3. Aims in ML:
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1. Optimize a performance criterion using data or past experience

2. Generalize to unseen data

2 Data Representation
Three common practices of data representation:

1. Element-wise Representation: x = [xi] where ai ∈ RN ,A = [aij ]

2. Column-wise Representation: A = [a1,a2, · · · ,aN ] where ai ∈ RN

3. One-hot: Discrete data can be represented as x = [0, · · · , 1, · · · , 0]

2.1 Space
1. Sample Space: X where x ∈ X

2. Metric Space: (X , dX ) where dX is a distance of metric of samples.

3. Probability Measure Space: PX satisfying

PX = {µ :

∫
x∈X

µ(x)dx = 1, µ(x) ≥ 0, ∀x ∈ X}

• µ ∈ PX is a probability measure on X

4. Metric-Measure Space: XdX ,µX := (X , dX , µX )

One example of MM-space can be a 2-dimensional space with a Gaussian distribution, where X = R2, dX
is the Euclidean distance, and µX is the Gaussian distribution.

• Most ML tasks correspond to reconstruct the MM-space from observed data: Given {x} ⊂ X

– Data representation: Find a map f : X → ZdZ ,µZ

– Metric learning: Learn a metric dX

– Estimate µX : Learn a density estimator µ̂X

• Vectorized data representation often leads to a good metric space - Euclidean space.

3 A Basic Paradigm of ML
As preparation, we have

• Data: X = {xi}Ni=1 ⊂ X , optionally with labels Y = {yi}Ni=1 ⊂ Y

• A loss function: L : X × Y 7→ R

• A model with parameter Mθ

Our training task is to

min
θ∈Ω

N∑
i=1

L(Mθ(xi), yi)

where f(θ) =
N∑
i=1

L(Mθ(xi), yi) is the objective function of the variable θ and Ω is the feasible domain.
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(Ex. )As preparation, we have

• Data: xn ∈ R2: the sale and the revenue of the n-th company, yn ∈ R: the stock value of the n-th
company

• Model: A linear regression model with Gaussian noise

y = x⊤θ + ϵ, ϵ ∼ N (0, σ2I)

• Loss function: MSE: L(y, ŷ) = ‖y − ŷ‖22

Our training task is to

min
θ∈Ω

N∑
i=1

‖yi − x⊤
i θ‖22

3.1 Keypoints of the Learning Problem
1. Data Processing: data processing is conducted to suppress the unfairness of features.

• Shifting and Scaling: Standardize x into x− µ

σ
.

The basic idea is to make each feature has zero mean and unit variance.

• Whitening: Given X = [x1, · · · ,xD] with D features, and the estimate covariance matrix measuring
the covariance between feature i and j is:

Σ̂ =
1

N − 1
(X − 1N µ̂⊤)⊤(X − 1N µ̂⊤)

where 1N is a N -dimensional vector with all elements equal to 1. Then we can whiten the data by

X̃ = (X − 1N µ̂⊤)Σ̂
− 1
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The basic idea is to make each feature zero-mean, unit-variance and uncorrelated to each other.

2. Evaluation:

• Loss Function: MSE = |y − ŷ|2,MAE = |y − ŷ|

• Cross Validation:

3. Training: Model Selection
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Akaike Information Criterion(AIC)

To estimate the relative amount of information lost by a given model, and achieve a trade-off between
good-of-fitness and model simplicity. Suppose that we have a statistical model of some data X. Let
K be the number of model parameters and L̂ = maxP (X|θ̂) be the maximum likelihood for the model,
then

AIC = 2K − 2 log L̂

Given M models and their AIC values {AICm}Mm=1, the relative likelihood of model m is

exp

(
AICmin −AICm

2

)
. The smaller the distance between AICmin and AICm, the less information

is lost by the model m compared to the best model.

Bayesian Information Criterion(BIC)

Suppose that we have a statistical model of some data X. Let K be the number of model parameters,
N be the number of data points, and L̂ = maxP (X|θ̂) be the maximum likelihood for the model, then

BIC = K logN − 2 log L̂

For example, in Polynomial Regression, K = polynomial order, and the N = data points size, L =
1

(2π)
n
2 σn

exp

(
−‖y −Xw‖22

2σ2

)
(Normally we omit the coefficients to make it clearer)
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