
Lecture 10: Non-parametric Clustering
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1 Nonparametric Clustering

1.1 Kernel Density Estimation
Given i.i.d. samples, we wish to estimate their density function in a nonparametric way.

Kernel Density Estimation (KDE)

Given i.i.d. samples {xn}Nn=1, the KDE of the samples is defined as

p̂h(x) =
1

N

N∑
n=1

Kh(x,xn) :=
1

N

N∑
n=1

Kh(x− xn)

where h is the bandwidth of the kernel.

[Note]: For 1-dimension data, under Gaussian kernel, a rule of thumb for bandwidth selection is h =

(
4σ̂5

3N

)0.2

≈

1.06σ̂N−0.2, where σ̂ is the standard deviation of the samples.
[Note]: When Kh is a Gaussian kernel, the KDE can actually be interpreted as a GMM model with known
parameters.

Figure 1 shows a simple example of the KDE of a 1-dimension dataset. The left histogram is essentially a
KDE graph with a gate kernel (Kh(x,x

′) =
1

h
· I(∥x − x′∥1 ≤ h)), and the right KDE curve is obtained by

adding up the Gaussian kernels (Kh(x,x
′) =

1√
2πh

exp

(
−∥x− x′∥22

2h2

)
) of each sample.
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Kernel Density Estimation with Individual Kernels

Figure 1: Kernel Density Estimation

1.2 Mean-Shift Algorithm
As an overview, the Mean-Shift clustering algorithm is a nonparametric clustering algorithm that works by

iteratively shifting the data points towards the densest area of the data, and therefore forming clusters. Figure
2 shows a simplest 1D example of shifting process. The data points are shifted towards the peak of kernel
density.
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Figure 2: Shifting Data Points to the Densest Area

It’s nonparametric because unlike K-means clustering, it doesn’t require the number of clusters, K, to be
specified beforehand. The number of clusters is determined based on the areas where the density of the data
points is highest, and the densest areas are determined by the kernel density estimation introduced before.

Before we introduce the steps of Mean-Shift algorithm, we need to specify the definition of the mean of a
data point in the algorithm. Given a set of samples {xn}Nn=1 and a kernel function Kh(x,x

′) with bandwidth
h, the mean of a data point x in its neighborhood N (x) is defined as

m(x) =

∑
xi∈N (x)

xiKh(x,xi)∑
xi∈N (x)

Kh(x,xi)

the neighborhood N (x) can be defined as a circle centered at x with radius h, or a KNN neighborhood with k

nearest neighbors, or merely all data points. Here we can adopt N (x) = {xi}Ni=1 for simplicity, that is,

m(x) =

N∑
i=1

xiKh(x,xi)

N∑
i=1

Kh(x,xi)

one can notice that m(x) coincides with the definition of Nadaraya-Watson estimator in kernel regression.

Mean-Shift Algorithm

• Initialization: Initialize the mean of each data point to its own value.

• Mean-Shift Vector: For each xi, the mean-shift vector is m(xi)− xi =

N∑
i=1

xiKh(x,xi)

N∑
i=1

Kh(x,xi)

− xi.

• Shifting: Updating by xi ← m(xi)

• Iteration: Repeat steps 2 and 3 until convergence or maximum iteration is reached.

Figure 3 shows the Mean-Shift algorithm in action. Now we will justify why by updating xi ← m(xi),
the data points will eventually converge to their nearest peakw of the kernel density. Suppose the kernel

function is a Gaussian kernel Kh(x,x
′) =

1√
2πh

exp

(
−∥x− x′∥22

2h2

)
, we compute the gradient of kernel density

p̂h(x) =
1

N

N∑
n=1

Kh(x− xn) as
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Figure 3: Mean-shift Algorithm

∇xp̂h(x) =
1

N

N∑
n=1

∇xKh(x− xn) =
1

N

N∑
n=1

∇x

(
1√
2πh

exp

(
−∥x− xn∥22

2h2

))

=
1

N

N∑
n=1

1√
2πh

exp

(
−∥x− xn∥22

2h2

)
x− xn

h2
= − 1

Nh2

N∑
n=1

Kh(x,xn)(x− xn)

∝
N∑

n=1

Kh(x,xn)(x− xn) ∝

N∑
n=1

Kh(x,xn)(xn − x)

N∑
n=1

Kh(x,xn)x

=

N∑
n=1

Kh(x,xn)xn

N∑
n=1

Kh(x,xn)

− x

= m(x)− x

The gradient of the kernel density is proportional to the mean-shift vector, which means that by updating
xi ← m(xi), we are essentially doing a gradient ascent on the data points: x

(t+1)
n = x

(t)
n + η∇xp̂h(x

(t)
n ).

The Mean-Shift algorithm can also be considered as a variant of EM algorithm, where the E-step is com-
puting m(xi), ∀i, and the M-step is updating xi ← m(xi). Under the EM algorithm setup:

• Data: {xn}Nn=1

• Latent variable: means / centroids {mk}Kk=1

• E-step: estimating the mean m(xi) conditioned on xi.

• M-step: maximizng p(xi) (finding the nearest peak)
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