
Lecture 11: Introduction to Classification
Shukai Gong

From the viewpoint of statistical machine learning, given a set of labeled data {xn ∈ X , yn ∈ C}, we wish to
train a classifier f : X 7→ C that can predict the class label y of a new data point x. In this lecture, we will
introduce some basic generative or discriminative models for classification.

1 K-Nearest Neighbor Classifier
Suppose we have a set of labeled data {xn, yn} where yn has N classes. We can first present yn as a one-hot

vector yn, where the i-th element is 1 and all other elements are 0 when yn belongs to class i. For a new data
point x, we can compute its class label y by

p(ŷ|x) = 1

|Nh(x)|
∑

xn∈Nh(x)

yn,Nh(x) = top-K({xn : d(xn,x) ≤ h})

Here Nh(x) is the K-nearest neighbor set of x, and the probability of x belonging to the i-th class is

p(ŷi|x) = ŷ[i]

2 Naive Bayes Classifier
Bayesian Classifiers are based on Bayesian decision theory. Suppose that we have N classes Y = {c1, · · · , cN},

denote λij = I(i 6= j) as the loss of classifying an instance of class cj as class ci. The expected loss of classifying
an instance of class cj as class ci is

R(ci|x) =
N∑
j=1

λijP (cj |x) = 1− P (ci|x)

We wish to find a classifier f that minimizes the expected loss, i.e.

f∗(x) = arg min
ci∈Y

R(ci|x) = argmax
ci∈Y

P (ci|x)

Here f∗ is called the Bayes optimal classifier. For each sample x, we choose the class c that maximizes the
posterior probability P (c|x). By Bayes’ theorem, we have

f∗(x) = argmax
ci∈Y

P (ci|x) = argmax
ci∈Y

P (x|ci)P (ci)

P (x)
= argmax

ci∈Y
P (x|ci)P (ci)

Here the prior is P (ci), the proportion of data points that belong to class ci in the training set, and the likelihood
is P (x|ci), the joint probability of observing all features of x given that it belongs to class ci. In the setting
of Naive Bayes, we assume attribute conditional independence, i.e. the features are independent of
each other knowing all labels Y. Denote Dc as the set of data points that belong to class c in training set
D, we have

fNB(x) = argmax
c∈Y

P (x|c)P (c) = argmax
c∈Y

P (c)

D∏
d=1

P (xd|c)

= argmax
c∈Y

|Dc|
|D|

D∏
d=1

P (xd|c)
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• Gaussian Naive Bayes: For each x ∈ RD, suppose each feature xd is assumed to be p(xd|c) ∼ N (µcd, σ
2
cd).

P (xd|c) =
1√

2πσcd

exp

(
− (xd − µcd)

2

2σ2
cd

)
By MLE, we can estimate µ̂cd =

1

|Dc|
∑

x∈Dc

xd, σ̂2
cd =

1

|Dc|
∑

x∈Dc
(xd − µ̂cd)

2.

• Multinomial Naive Bayes: For each x ∈ ND, suppose

P (x|c) = n!

x1!x2! · · ·xD!

D∏
d=1

pxd

c,d

=

Γ(
D∑

d=1

xd + 1)

D∏
d=1

Γ(xd + 1)

D∏
d=1

pxd

c,d =

(
D∑

d=1

xd)!

D∏
d=1

(xd)!

D∏
d=1

pxd

c,d

Then

P (c|x) = P (x|c)P (c)

P (x)
∝ P (x|c)P (c) ∝ P (c)

D∏
d=1

pxd

c,d

⇒ logP (c|x) ∝ logP (c) +

D∑
d=1

xd log pc,d = logP (c) + [log pc,1, · · · , log pc,D]

x1

...
xD

 ≜ logP (c) + θT
c x

• Bernoulli Naive Bayes: For each x ∈ {0, 1}D, suppose

p(x|c) =
D∏

d=1

pxd

c,d(1− pc,d)
1−xd

3 Linear Discriminant Analysis
As is shown in Figure 1, given a training set {xn, yn}Nn=1 where yi are class labels, we want to find out an

optimal line y = w⊤x that maximizes the separation between different classes and minimizes the seperation
within classes of data points projected onto y = w⊤x. For a new data point x∗ to be classified, we project it
on the same line and assign it to the class that is closest to it. Essentially, we want to find out the optimal w
that seperates the projections of data points from different classes as much as possible.

Figure 1: Linear Discriminant Analysis

LDA can both serve as a dimensionality reduction technique and a classifier.
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• First, LDA finds a low-dimensional representation of the data (by projection vector w or projection matrix
W ) that maximizes the ratio of between-class covariance to within-class covariance.

• Then, by likelihood ratio test, LDA classifies a new data point x∗ by comparing the likelihood of x∗

belonging to different classes. For example, if log P (x∗|y∗ = c1)

P (x∗|y∗ = c0)
> 0, then x∗ is classified as c1. P (x∗|y∗ =

ci) is often modeled as Gaussian.

3.1 Binary Classification Case
Given a dataset {xn, yn}Nn=1, yi ∈ {0, 1}, denote Xi,µi,Σi as the data points, mean vector and covariance

matrix of class i. When all data points are projected onto y = w⊤x, the centers of the two classes are projected
onto w⊤µ0 and w⊤µ1, and the covariance for two classes of projections are w⊤Σ0w and w⊤Σ1w respectively.

Maximizing the separation of projections between classes can be achieved by maximizing the distance between
the centers of two classes, i.e. ‖w⊤µ1 − w⊤µ0‖22, and minimizing the separation of projections within each
class can be achieved by minimizing the sum of the covariance matrices of two classes, i.e. w⊤(Σ0 + Σ1)w.
Therefore, the optimization problem can be formulated as

max
w

J = max
w

‖w⊤µ1 −w⊤µ0‖22
w⊤(Σ0 +Σ1)w

=
w⊤(µ1 − µ0)(µ1 − µ0)

⊤w

w⊤(Σ0 +Σ1)w

Before we solve this optimization problem, we first define:

• Within-class scatter matrix: Sw = Σ0 +Σ1 =
∑

x∈X0

(x− µ0)(x− µ0)
⊤ +

∑
x∈X1

(x− µ1)(x− µ1)
⊤

• Between-class scatter matrix: Sb = (µ1 − µ0)(µ1 − µ0)
⊤

Then our optimization problem can be rewritten as

max
w

J = max
w

w⊤Sbw

w⊤Sww

Note that J is a Rayleigh quotient where the denominator and numerator are both quadratic forms of w. The
solution to this optimization problem is irrelevant to the magnitude of w but only to its direction.(i.e. if
w∗ is a solution, λw∗ is also a solution for any λ 6= 0). Without loss of generality, we can assume w⊤Sww = 1,
then the optimization problem can be rewritten as

max
w

w⊤Sbw s.t. w⊤Sww = 1

By setting up the Lagrangian, we have

L = w⊤Sbw + λ(1−w⊤Sww)

∂L
∂w

= 2Sbw − 2λSww = 0

⇒ Sbw = λSww

Plugging Sbw = λSww back into constraint, we have

w⊤Sww = w⊤λSww = λ

So w is the eigenvector of S−1
w Sb and the corresponding to the largest eigenvalue λmax. From

another perspective, note that Sbw = (µ1 − µ0)
(
(µ1 − µ0)

⊤w
)

is parallel to µ1 − µ0, meaning that

Sww =
1

λ
Sbw ∝ (µ1 − µ0) ⇒ w ∝ S−1

w (µ1 − µ0)

Since w only indicates the direction, the magnitude of w is unimportant.
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3.2 Decision Rule of Binary Classification
Now we will prove that in binary classification task, when the two types of data are Gaussian distributed and

homoskedastic, LDA generates the Bayesian optimal classifier. Before introducing the proof, several assumptions
are made:

• Multivariate Normality: The data points x ∈ Xi are drawn from a multivariate normal distribution
N (µi,Σi), i.e. P (x|y = i) =

1

(2π)D/2|Σi|1/2
exp

(
−1

2
(x− µi)

⊤Σ−1
i (x− µi)

)
.

• Homoskedasticity: Σ0 = Σ1 = Σ for LDA (No such restriction for QDA).

Since the Bayes optimal classifier is defined as f∗(x) = arg max
y∈{0,1}

P (x|y)P (y), essentially we cares about

the relative magnitude of P (x|y = 1)P (y = 1) and P (x|y = 0)P (y = 0).

log
P (x|y = 1)P (y = 1)

P (x|y = 0)P (y = 0)
= log

P (x|y = 1)

P (x|y = 0)
+ log

P (y = 1)

P (y = 0)
= log

P (x|y = 1)

P (x|y = 0)

since the two classes share the same prior probability by assumptions.

P (x|y = 1)

P (x|y = 0)
=

1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ1)

⊤Σ−1
1 (x− µ1)

)
1

(2π)D/2|Σ|1/2
exp

(
−1

2
(x− µ0)

⊤Σ−1
0 (x− µ0)

)
= exp

(
−1

2
(x− µ1)

⊤Σ−1
1 (x− µ1) +

1

2
(x− µ0)

⊤Σ−1
0 (x− µ0)

)
For LDA, since Σ0 = Σ1 = Σ, we have

P (x|y = 1)

P (x|y = 0)
= exp

(
−1

2
(x− µ1)

⊤Σ−1(x− µ1) +
1

2
(x− µ0)

⊤Σ−1(x− µ0)

)
= exp

(
−1

2
(x⊤Σ−1x− 2µ⊤

1 Σ
−1x+ µ⊤

1 Σ
−1µ1 − x⊤Σ−1x+ 2µ⊤

0 Σ
−1x− µ⊤

0 Σ
−1µ0

)
= exp

(
x⊤Σ−1(µ1 − µ0)−

1

2
(µ⊤

1 Σ
−1µ1 − µ⊤

0 Σ
−1µ0)

)
= exp

(
(µ1 − µ0)

⊤Σ−1x− 1

2
(µ1 − µ0)

⊤Σ−1(µ1 + µ0)

)
Normally we set the threshold for decision to be 0, i.e.

yx = 1 : log
P (x|y = 1)

P (x|y = 0)
> 0 ⇐⇒ (µ1 − µ0)

⊤Σ−1x >
1

2
(µ1 − µ0)

⊤Σ−1(µ1 + µ0) = 0

If we denote w = Σ−1(µ1 − µ0), then the decision rule can be rewritten as

yx = 1 : w⊤x > w⊤ (µ1 + µ0)

2

Surprisingly, the w derived from the Bayesian viewpoint is exactly the w = S−1
w (µ1−µ0) we derived from LDA

optimization problem. (Sw = Σ0 +Σ1 = 2Σ here, the magnitude difference can be neglected)

3.3 Multiclass Case
Suppose we have a dataset {xn, yn}Nn=1,xi ∈ RD, yi ∈ {1, · · · ,K}, and we want to lower the dimensionality

of the data points to d′ (d′ ≤ K − 1). We need to find a d-dimensional hyperplane W = [w1, · · · ,wd′ ] ∈ RD×d′
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that maximizes the within-class seperation and minimizes the between-class seperation.

We still inherit the notation of Xi,µi,Σi from the binary classification case. Denote µ =
1

N

N∑
n=1

xn as the

overall mean vector, and mi as the number of data points in class i. Similarily, we define

• Within-class scatter matrix: Sw =
K∑
i=1

∑
x∈Xi

(x− µi)(x− µi)
⊤

• Between-class scatter matrix: Sb =
K∑
i=1

mi(µi − µ)(µi − µ)⊤

Our optimization goal is now

max
w1,··· ,w′

d

d′∑
i=1

w⊤
i Sbwi

d′∑
i=1

w⊤
i Swwi

= max
W

tr(W⊤SbW )

tr(W⊤SwW )

⇐⇒ max
W

tr(W⊤SbW ) s.t. tr(W⊤SwW ) = 1

Consider Lagrangian

L = tr(W⊤SbW ) + λ(1− tr(W⊤SwW ))

∂L
∂W

= W⊤(Sb + S⊤
b )− λW⊤(Sw + S⊤

w) = 2W⊤(Sb − λSw) = 0

⇒ SbW = λSwW

Similarily, we choose W to be the eigenvectors of S−1
w Sb corresponding to the d′ largest eigenvalues.

If classification is required besides dimension reduction, there are a number of alternative techniques avail-
able.

• One against the rest: Train K classifiers, each of which maximizes the separation between one class
and the rest.

• Pairwise classification: Train K(K − 1)/2 classifiers, each of which maximizes the separation between
two arbitary classes.

4 Logistic Regression
Logistic Regression is a special case of GLM where the link function is sigmoid (logit). Consider a binary

classification case where the output labels are y ∈ {0, 1}. Given a set of labeled data {xn, yn}Nn=1, the LR model
is

y = σ(x⊤β) =
1

1 + exp(−x⊤β)
⇐⇒ log

y

1− y
= x⊤β

The labels y are viewed as posterior probability of label y on data point x, i.e. P (y = 1|x), so that

log
P (y = 1|x)
P (y = 0|x)

= x⊤β ⇒

P (y = 1|x) = 1

1 + exp(−x⊤β)
= σ(x⊤β)

P (y = 0|x) = 1− P (y = 1|x) = 1− σ(x⊤β)
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The distribution of the output labels is Bernoulli, so the log-likelihood function for an arbitary data point xi is
log f(yi|xi,β) = log

(
P (yi|xi)

yi(1− P (yi|xi))
1−yi

)
= yi logP (yi|xi)+(1−yi) log(1−P (yi|xi)). The parameter

β can be estimated by MLE,

β = argmax
β

N∑
i=1

log f(yi|xi,β) = argmax
β

N∑
i=1

(yi logP (yi|xi) + (1− yi) log(1− P (yi|xi)))

= argmax
β

N∑
i=1

(
yi log σ(x

⊤
i β) + (1− yi) log(1− σ(x⊤

i β))
)

≜ argmax
β

L(β) (Essentially Cross-Entrophy Loss)

There is no closed-form solution to β, usually we use gradient descent or Newton’s method to solve it.

Gradient Descent: β(t+1) = β(t) − η∇βL(β(t))

Newton’s Method: β(t+1) = β(t) −
(
∇2

βL(β
(t))
)−1

∇βL(β(t))

And the decision rule for LR is

P (y = 1|x) = 1

1 + exp(−x⊤β)
> 0.5 ⇐⇒ x⊤β > 0

4.1 Softmax Regression
Softmax Regression is a generalization of LR to multiclass classification. Given a set of labeled data

{xn,yn}Nn=1 where yi ∈ {0, 1}K is an one-hot vector. The distribution of the output labels is Multinomial, so
the log-likelihood function for an arbitary data point xi is

log f(yi|xi,β) = log

(
K∏

k=1

P (yik|xi)
yik

)
=

K∑
k=1

yik logP (yik|xi)

The cell label yik within the one-hot vector yi are still viewed as the posterior probability of label yik on data
point xi, i.e. P (yik = 1|xi), but the link function switches from sigmoid to softmax,

P (yik = 1|xi) =
exp(x⊤

i βk)∑K
k=1 exp(x

⊤
i βk)

= softmax(x⊤
i β)k

By MLE, the parameter {βk}Kk=1 can be estimated by

{βk}Kk=1 = arg max
{βk}K

k=1

N∑
i=1

K∑
k=1

yik logP (yik = 1|xi,βk)

However, the optimal {βk}Kk=1 is not unique in that softmax is shift-invariant

softmax(x⊤
i β)k =

exp(x⊤
i βk)∑K

k=1 exp(x
⊤
i βk)

=
exp(x⊤

i βk)∑K
k=1 exp(x

⊤
i βk)

· exp(∆)

exp(∆)
= softmax(x⊤

i β +∆)k = softmax(x⊤
i β

′)k
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5 Comparison between LDA and Logistic Regression

LDA Logistic Regression

Model
Generative: First obtain p(x|y)
explicitly, then determine p(y|x)

in the projected space

Discriminative:
Model p(y|x) directly

Assumption p(x|y = i) ∼ N (µi,Σi) GLM assumption

Decision Rule
The logarithm of likelihood ratio

indicates the confidence of
classification implicitly

p(y|x) indicates
the confidence of

classification directly

Table 1: Comparison between LDA and Logistic Regression
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