
Lecture 12: Support Vector Machine
Shukai Gong

Given a dataset {(xn, yn)}Nn=1, where xn ∈ RD and yn ∈ {−1, 1}, the goal of SVM is to find a hyperplane
w⊤x + b = 0 with largest separation such that the discriminative power is maximized and the error risk is
minimized. As is shown in Figure 1, the desired hyperplane has the largest distance to the nearest
training data points of any class so that the hyperplane is less likely to be influenced by out-of-sample data
points and more robust.

The hyperplane is shifted along two opposite directions w⊤x = b+ d and w⊤x = b− d to form a margin of
width 2d

∥w∥
. The data points that are on the margin are called support vectors. Eventually, the SVM model

can be written by

f∗(x) = sign((w∗)⊤x+ b∗)

where w∗ and b∗ are optimal parameters.

Figure 1: Hard-Margin Support Vector Machine

1 Hard-Margin SVM

1.1 Formulation of Optimization Goal
For a set of training data points {(xn, yn)}Nn=1, yi ∈ {−1,+1} that are 2-class linear separable, the

hard-margin SVM problem can be formulated as

maxmargin(w, b), s.t.
{
w⊤xi + b ≥ 0, if yi = 1,

w⊤xi + b < 0, if yi = −1.
, i = 1, · · · , N

⇐⇒ maxmargin(w, b), s.t. yi(w⊤xi + b) ≥ 0, i = 1, · · · , N

Margin can be defined as the shortest distance from the hyperplane to the nearest data point of any class, i.e.

margin(w, b) = min
i=1,··· ,N

|w⊤xi + b|
∥w∥
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Therefore our optimization goal can be rewritten as

max
w,b

min
i=1,··· ,N

|w⊤xi + b|
∥w∥

, s.t. yi(w⊤xi + b) ≥ 0, i = 1, · · · , N

⇐⇒ max
w,b

1

∥w∥
min

i=1,··· ,N
yi(w

⊤xi + b), s.t. ∃r > 0, min
i=1,··· ,N

yi(w
⊤xi + b) = r, i = 1, · · · , N

⇐⇒ max
w,b

r

∥w∥
, s.t. ∃r > 0, min

i=1,··· ,N
yi(w

⊤xi + b) = r, i = 1, · · · , N

Without loss of generality, we can set r = 1 since it is just a scaling factor and can be absorbed into w and b.
Therefore, the optimization problem can be rewritten as:

max
w,b

1

∥w∥
, s.t. min

i=1,··· ,N
yi(w

⊤xi + b) = 1, i = 1, · · · , N

⇐⇒ min
w,b

1

2
∥w∥2, s.t. yi(w⊤xi + b) ≥ 1, i = 1, · · · , N

1.2 Dual Problem Optimization
The primal problem can be solved by the Lagrange multiplier method, and the Lagrangian function is a

convex optimization problem with N linear constraints,

min
w,b

1

2
∥w∥2, s.t. yi(w⊤xi + b) ≥ 1, i = 1, · · · , N

It’s equivalent to an unconstrained primal problem with N Lagrange multipliers λi ≥ 0,

L(w, b,λ) = min
w,b

max
λ

1

2
∥w∥2 +

N∑
i=1

λi︸︷︷︸
≥0

(1− yi(w
⊤xi + b))︸ ︷︷ ︸

≤0

⇒

min
w,b

maxλ L(w, b,λ)

s.t. λi ≥ 0, i = 1, · · · , N

Non-negative Lagrangian Multipliers λi

For arbitary data point (xi, yi),

• If 1− yi(w
⊤xi + b) > 0, then max

λ
L(w, b,λ) =

1

2
∥w∥2 +∞ = ∞. (Meaningless!)

• If 1− yi(w
⊤xi + b) ≤ 0, then max

λ
L(w, b,λ) =

1

2
∥w∥2. (Set all λi = 0 maximizes the non-positive

term λi(1− yi(w
⊤xi + b)))

So

min
w,b

max
λ

L(w, b,λ) = min
w,b

(∞,
1

2
∥w∥2) = min

w,b

1

2
∥w∥2

By setting the Lagrangian multipliers λi ≥ 0 for all i = 1, · · · , N , we made an equivalent optimization
problem to the primal problem.

It can be proved that the dual problem is equivalent to the primal problem when the optimization goal is
convex and the constraints are linear (strong duality), i.e.min

w,b
max
λ

L(w, b,λ)

s.t. λi ≥ 0, i = 1, · · · , N
=

max
λ

min
w,b

L(w, b,λ)

s.t. λi ≥ 0, i = 1, · · · , N
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First, we take the derivative of L(w, b,λ) w.r.t w and b and set them to zero,
∂L
∂w

= w −
N∑
i=1

λiyixi = 0

∂L
∂b

= −
N∑
i=1

λiyi = 0

⇒


w =

N∑
i=1

λiyixi

N∑
i=1

λiyi = 0

Plugging these back to L(w, b,λ), we have

L(w, b,λ) =
1

2
∥w∥2 +

N∑
i=1

λi(1− yi(w
⊤xi + b))

=
1

2
w⊤w +

N∑
i=1

λi −
N∑
i=1

λiyi(w
⊤x) + b

N∑
i=1

λiyi

=
1

2

(
N∑
i=1

λiyixi

)⊤( N∑
i=1

λiyixi

)
+

N∑
i=1

λi −
N∑
i=1

λiyi

 N∑
j=1

λjyjxj

⊤

xi

=
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
⊤
i xj +

N∑
i=1

λi −
N∑
i=1

N∑
j=1

λiλjyiyjx
⊤
j xi

=

N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
⊤
i xj

So the duality problem is simplified to
max
λ

N∑
i=1

λi −
1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
⊤
i xj

s.t. λi ≥ 0, i = 1, · · · , N
N∑
i=1

λiyi = 0

=


min
λ

1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
⊤
i xj −

N∑
i=1

λi

s.t. λi ≥ 0, i = 1, · · · , N
N∑
i=1

λiyi = 0

A sufficient and necessary condition for strong duality (we use without proof) is that the primal problem
satisfies the Karush-Kuhn-Tucker (KKT) conditions. The KKT conditions for this specific problem are

∇wL(w, b,λ) = 0 ⇒ w∗ =
N∑
i=1

λiyixi

∇bL(w, b,λ) = 0 ⇒
N∑
i=1

λiyi = 0

λi(1− yi(w
⊤xi + b)) = 0, i = 1, · · · , N

λi ≥ 0, i = 1, · · · , N
1− yi(w

⊤xi + b) ≤ 0, i = 1, · · · , N

Let’s focus on the third condition (complementary slackness condition). For arbitary data point (xi, yi),

• If the data point is a support vector, i.e. 1− yi(w
⊤xi + b) = 0, then λi > 0.

• If the data point is beyond the margin, i.e. 1− yi(w
⊤xi + b) < 0, then λi = 0.

which means that non-support-vector data points won’t show up in w∗ =
N∑
i=1

λiyixi since their λi = 0. Taking

advantage of this, by picking one support vector (xk, yk) , we can derive b by

1− yk(w
⊤xk + b) = 0 ⇒ y2k(w

⊤xk + b) = yk ⇒ b∗ = yk −w⊤xk
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The hard-margin SVM is therefore

f∗(x) = sign((w∗)⊤x+ b∗),

w∗ =
N∑
i=1

λiyixi

b∗ = yk −w⊤xk

which only depends on the support vectors and the corresponding Lagrange multipliers.

2 Soft-Margin SVM
Hard-margin SVM is too idealized about the separability of the data points. In practice, the data points

are usually either not linearly separable, or subject to noise. As is shown in Figure 2, Soft-margin SVM allows
for some data points to be misclassified by introducing a slack variable ξi ≥ 0 for each data point (xi, yi)

to measure the degree of misclassification.

Figure 2: Soft-Margin Support Vector Machine

Recall that yi(w
⊤x + b) ≥ 1 indicates that the data point is correctly classified. The misclassification is

presented by yi(w
⊤x+ b) < 1. Some methods of defining slackness ξi is presented below:

• Counts: ξi = I(yi(w
⊤xi + b) < 1) (Discontinuous!)

• Hinge Loss: ξi = max(0, 1− yi(w
⊤xi + b)) (Recommended)

We can formulate the optimization problem as

min
w,b,ξ

1

2
∥w∥2 + C

N∑
i=1

max(0, 1− yi(w
⊤xi + b)), s.t. yi(w⊤xi + b) ≥ 1− ξi, i = 1, · · · , N

⇐⇒ min
w,b,ξ

1

2
∥w∥2 + C

N∑
i=1

ξi, s.t.
{
yi(w

⊤xi + b) ≥ 1− ξi, i = 1, · · · , N
ξi ≥ 0, i = 1, · · · , N
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Similar to the hard-margin SVM, we construct the Lagrangian function and derive its dual problem.

min
w,b,ξ

max
λ,µ

1

2
∥w∥2 + C

N∑
i=1

ξi +

N∑
i=1

λi(1− ξi − yi(w
⊤xi + b))−

N∑
i=1

µiξi

=max
λ,µ

min
w,b,ξ

1

2
∥w∥2 + C

N∑
i=1

ξi +

N∑
i=1

λi(1− ξi − yi(w
⊤xi + b))−

N∑
i=1

µiξi

⇒



∂L
∂w

= w −
N∑
i=1

λiyixi = 0

∂L
∂b

= −
N∑
i=1

λiyi = 0

∂L
∂ξi

= C − λi − µi = 0

⇒


w =

N∑
i=1

λiyixi

N∑
i=1

λiyi = 0

λi + µi = C

and the dual problem of the primal soft-margin SVM is


max
λ

L(w, b, ξ,λ,µ)

s.t. λi ≥ 0, i = 1, · · · , N
µi ≥ 0, i = 1, · · · , N

=



min
λ

1

2

∑N
i=1

N∑
j=1

λiλjyiyjx
⊤
i xj −

N∑
i=1

λi

s.t. λi ≥ 0, µi ≥ 0, i = 1, · · · , N
N∑
i=1

λiyi = 0

λi + µi = C, i = 1, · · · , N

=


min
λ

1

2

N∑
i=1

N∑
j=1

λiλjyiyjx
⊤
i xj −

N∑
i=1

λi

s.t. 0 ≤ λi ≤ C, i = 1, · · · , N
N∑
i=1

λiyi = 0

Compare to the hard-margin SVM case, the soft-margin SVM has an additional constraint λi ≤ C and µi ≥ 0

to control the trade-off between the margin and the misclassification. The KKT condition for the primal
soft-margin SVM is 

∇wL(w, b, ξ,λ,µ) = 0 ⇒ w∗ =
N∑
i=1

λiyixi

∇bL(w, b, ξ,λ,µ) = 0 ⇒
N∑
i=1

λiyi = 0

∇ξiL(w, b, ξ,λ,µ) = 0 ⇒ λi + µi = C, i = 1, · · · , N
λi(1− ξi − yi(w

⊤xi + b)) = 0, i = 1, · · · , N
µiξi = 0, i = 1, · · · , N
λi ≥ 0, µi ≥ 0, ξi ≥ 0, i = 1, · · · , N
1− ξi − yi(w

⊤xi + b) ≤ 0, i = 1, · · · , N

Let’s break down this huge KKT conditions: For arbitary data point (xi, yi), either λi = 0 or 1−ξi−yi(w
⊤xi+

b) = 0.
If λi = 0 ⇒ No effect on w∗

If λi > 0 ⇒ (xi, yi) is a SV


If λi < C ⇒ µi > 0 ⇒ ξi = 0 ⇒ b∗ = yi −w⊤xi

If λi = C ⇒ µi = 0

{
If ξi ≤ 1 ⇒ Tolerated Misclassification
If ξi > 1 ⇒ Misclassification
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So we need to find a support vector (xk, yk) with 0 < λk < C to derive b∗. Still, the soft-margin SVM is

f∗(x) = sign((w∗)⊤x+ b∗),

w∗ =
N∑
i=1

λiyixi

b∗ = yk −w⊤xk

3 Kernel SVM
We have assumed in hard and soft SVM that data points are linearly separable. For non-linearly separable

data points, we can use the kernel trick to map the data points to a higher-dimensional feature space
where they are linearly separable.

Figure 3: Kernel Trick in SVM

Denote ϕ(x) as the feature vector of x in the higher-dimensional space, the SVM model corresponding to
the hyperplane in the feature space is w⊤ϕ(x)+ b = 0 and the optimization problem can be formulated as (take
soft-margin SVM as an example)

min
w,b,ξ

1

2
∥w∥2 + C

N∑
i=1

ξi, s.t.
{
yi(w

⊤ϕ(xi) + b) ≥ 1− ξi, i = 1, · · · , N
ξi ≥ 0, i = 1, · · · , N

The dual problem of the primal kernel soft-margin SVM is
min
λ

1

2

N∑
i=1

N∑
j=1

λiλjyiyjϕ(xi)
⊤ϕ(xj)−

N∑
i=1

λi

s.t. 0 ≤ λi ≤ C, i = 1, · · · , N
N∑
i=1

λiyi = 0

We can observe that the only difference between the kernel SVM and the linear SVM is that
the dot product x⊤

i xj is replaced by the kernel function κ(xi,xj) = ϕ(xi)
⊤ϕ(xj). As an analogy,

w∗ =
N∑
i=1

λiyiϕ(xi) and b∗ = yk −w⊤ϕ(xk), and the kernel SVM model is written by

f∗(x) =sign((w∗)⊤ϕ(x) + b∗)

=sign
(

N∑
i=1

λiyiϕ(xi)
⊤ϕ(x) + b∗

)

=sign
(

N∑
i=1

λiyiκ(xi,x) + b∗

)

Similar to other kernel methods, we don’t have to find ϕ explicitly, but only need to introduce
the kernel function κ to derive the hyperplane.
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4 Noticable Facts about SVM
• Both primal and dual problems are quadratic programming problems, which can be solved by numerical

methods. Ultimately we need to know certain λk to derive the hyperplane.

• When C → ∞, the soft-margin SVM ”behaves like” the hard-margin SVM. (From 0 < λk < C to 0 < λk)

• Linear SVM is a special case of kernel SVM with a linear kernel: κ(xi,xj) = x⊤
i xj .
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