
Lecture 13: Decision Tree and Ensemble Learning
Shukai Gong

1 Information Theory

Self Information

Self Information measures the amount of information of an r.v.:

I(x) = − logP (x)

The higher probability of an event, the less self information it carries. When the base of the logarithm is 2,
the unit of self information is bit; when the base is e, the unit is nat.

Entropy

In information theory, entropy is a measure of the uncertainty associated with an r.v. The entropy of
an r.v. X is defined as:

H(X) = −
∑
x∈X

P (x) logP (x) = EX [I(x)] = EX [− logP (x)]

Specially we define 0 log 0 = 0 when P (x) = 0.

The larger the entropy, the more information (uncertainty) the r.v. carries. The entropy is maximized
when all outcomes are equally likely (uniform distribution) and is minimized when the rr.v. is deterministic
(P (x) = 1).

One major goal of Information Theory is to use minimal bits to encode the information. For a r.v. X ∼ P (X),
H(X) is the optimal and averaged number of bits needed to encode the information of X.

Joint Entropy

For two r.v.s X ∈ X and Y ∈ Y , the joint entropy is defined as:

H(X,Y) = −
∑
x∈X

∑
y∈Y

P (x, y) logP (x, y) = E(X,Y)∼P (X,Y)[− logP (x, y)]

When X and Y are independent,

H(X,Y) = −
∑
x∈X

∑
y∈Y

P (x)P (y) log (P (x)P (y)) = −
∑
x∈X

∑
y∈Y

P (x)P (y) logP (x)−
∑
x∈X

∑
y∈Y

P (x)P (y) logP (y)

= −
∑
x∈X

P (x) logP (x)−
∑
y∈Y

P (y) logP (y) = H(X) +H(Y)

Conditional Entropy

Conditional entropy quantifies the uncertaintyof r.v. X given another r.v. Y :

H(X|Y) = −
∑
x∈X

∑
y∈Y

P (x, y) logP (x|y) = −
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (y)

It’s clear that H(X|Y) = H(X,Y)−H(Y)

1

Mutual Information

Mutual Information measures the amount of information loss of one r.v. when another r.v. is observed:

I(X;Y) =
∑
x∈X

∑
y∈Y

P (x, y) log
P (x, y)

P (x)P (y)
= E(X,Y)∼P (X,Y)

[
log

P (x, y)

P (x)P (y)

]

Maximizing the amount of information shared by two r.v.s is equivalent to maximizing the their mutual
information. It’s clear that

I(X;Y) = H(X)−H(X|Y) = H(Y)−H(Y |X)

I(X;Y) = I(Y ;X)

Cross Entropy

Cross entropy measures the average number of bits needed to encode the information of one r.v. X ∼ P

using the probability distribution of another r.v. Y ∼ Q:

H(P,Q) = −
∑
x∈X

P (x) logQ(x) = EX∼P [− logQ(x)]

The closer the two distributions P and Q are, the smaller the cross entropy is. When P = Q, the cross
entropy is equal to the entropy of P . Note that

H(P,Q) = H(P) + KL(P ||Q)

KL Divergence / Relative Entropy

Given a true distribution P and its approximate distribution Q, the KL Divergence is defined as

KL(P ||Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
= EX∼P

[
log

P (x)

Q(x)

]

Specially we define 0 log 0
0 = 0 and 0 log 0

q = 0.

KL Divergence provides a measure of the difference between two probability distributions P and Q. Note
that

I(X;Y) = KL(P (X,Y)||P (X)P (Y))

So minimizing KL Divergence works for fitting model, and maximizing KL Divergence ensures that X ∼ P and
Y ∼ Q are heavily dependent.

KL divergence is always non-negative in that

−KL(P ||Q) =

∫
x∈X

P (x) log
Q(x)

P (x)
dx ≤︸︷︷︸

Jensen Inequality

log

∫
x∈X

P (x)
Q(x)

P (x)
dx = 0

The equality holds if and only if P = Q. However, KL Divergence is not symmetric, i.e., KL(P ||Q) ̸= KL(Q||P),
and doesn’t satisfy the triangle inequality, i.e., KL(P ||Q) + KL(Q||R) ≥ KL(P ||R) doesn’t hold, so it’s not a
true distance metric.

2

JS Divergence

The Jensen-Shannon Divergence is defined as

JS(P ||Q) =
1

2
KL
(
P

∣∣∣∣∣∣∣∣P +Q

2

)
+

1

2
KL
(
Q

∣∣∣∣∣∣∣∣P +Q

2

)

Wasserstein Distance

Wasserstein Distance is also used to measure the difference between two probability distributions. Given
two distributions P and Q, the p-th Wasserstein Distance is defined as

Wp(P,Q) =

(
inf

γ∈Γ(P,Q)
E(x,y)∼γ [d(x, y)

p]

) 1
p

where Γ(P,Q) is the set of all joint distributions γ(x, y) whose marginals are P and Q, and d(x, y) is the
distance between x and y.

2 Decision Tree
In general, a decision tree consists of a root node, several internal nodes, and several leaf nodes. Each leaf

node corresponds to a class label, and each internal node corresponds to a feature test. The tree is constructed
by recursively partitioning the data into subsets based on the results of feature tests, so a path from the root
to a leaf represents a decision rule. The goal of decision tree learning is to find a simple and interpretable
rule for different features that sufficiently achieves complicated non-linear classification and has good
generalization performance.

Figure 1: Example: The probability of kyphosis after spinal surgery given the age of the patient and the
vertebrae at which the surgery was started.

The construction of a decision tree generally follows a divide-and-conquer strategy: denote

• D = {(x1, y1), (x2, y2), . . . , (xN , yN)}: The training set. xi ∈ Rd is the feature vector and yi ∈ Y is the
label.

• A = {a1, a2, . . . , ad}: The Attribute set.

1 def DecisionTreeLearning(D, A):
2 generate a node
3 if all samples in D have the same label C:
4 return a leaf node with the label C

5 if A = ∅ or all samples in D have the same feature values on A:
6 return a leaf node with the majority label in D

3

7 else:
8 choose the best splitting attribute a∗ from A

9 for each value a∗v of a∗:
10 add a branch corresponding to a∗ = a∗v
11 Dv = {samples in D with a∗ = a∗v}
12 if Dv is empty:
13 add a leaf node with the majority label in D
14 else:
15

16 return the decision tree

There are three return conditions in the algorithm:

1. All samples have the same label C, no need for further partition.

2. Current attribute set A is empty or all samples have the same feature values on A, no way for further
partition.

3. Current sample set D is empty, no way for further partition.

Clearly, the key of decision tree learning is to choose the best splitting attribute a∗. There are
several criteria to measure the goodness of a split, but they can be boiled down to one principle: maximizing
the information gain.

2.1 Iterative Dichotomiser 3 (ID3)
Denote pk as the proportion of samples in class k in the current sample set D, k = 1, 2, . . . , |Y|. Suppose

discrete attribute a has V values {a1, a2, . . . , aV }, and Dv is the subset of samples with a = av. The information
gain of attribute a can be defined as the mutual information between the attribute a and the training set D:

Gain(D, a) = I(D; a) = H(D)︸ ︷︷ ︸
Entropy of parent

− H(D|a)︸ ︷︷ ︸
Weighted sum of children’s entropies

= H(D)−
V∑

v=1

P (av)H(Dv)

= −
|Y|∑
k=1

pk log2 pk −
V∑

v=1

P (av)

|Y|∑
k=1

−pk(av) log2 pk(av)

= −
|Y|∑
k=1

pk log2 pk −
V∑

v=1

|Dv|
|D|

|Y|∑
k=1

−pk(av) log2 pk(av)

and we choose the attribute with the largest information gain as the splitting attribute.

a∗ = argmax
a∈A

Gain(D, a)

For continous attributes, we can discretize them by bi-partitioning. Suppose an attribute a has N values
{a1, a2, . . . , aN} on training set D, we can choose the threshold t to split D into D−

t = {(x, y) ∈ D|a(x) ≤ t}
and D+

t = {(x, y) ∈ D|a(x) > t}. Obviously, for arbitrary adjacent attributes ai and ai+1, any t ∈ (ai, ai+1)

yields the same splitting of D. Specifically, we consider a candidate set of thresholds:

Ta =

{
t =

ai + ai+1

2
|i = 1, 2, . . . , N − 1

}

4

and find the best threshold t∗ that maximizes the information gain:

Gain(D, a) = max
t∈Ta

Gain(D, a, t) = max
t∈Ta

H(D)−
∑

θ∈{+,−}

|Dθ
t |
|D|

H(Dθ
t)

a∗ = argmax

a∈A
Gain(D, a) = argmax

a∈A
max
t∈Ta

Gain(D, a, t)

2.2 C4.5
The ID3 algorithm has a problem that it tends to choose the attribute with more values as the

splitting attribute. To solve this problem, the C4.5 algorithm uses the information gain ratio as the
criterion to choose the splitting attribute:

GainRatio(D, a) =
Gain(D, a)

IV (a)

where IV (a) refers to the intrinsic value of attribute a:

IV (a) =

V∑
v=1

−|Dv|
|D|

log2
|Dv|
|D|

IV (a) grows with the number of values of attribute a, so the information gain ratio can effectively penalize the
attribute with more values.

In practice, the C4.5 algorithm uses a heuristic method to choose the splitting attribute instead of simply
a∗ = argmax

a∈A
GainRatio(D, a). It first chooses the attributes with the over-average information gain ratio, and

then chooses the attribute with the largest information gain ratio from them.

2.3 CART (Classification and Regression Trees)
The CART algorithm uses the Gini index as the criterion to choose the splitting attribute: the purity of

current node D is measured by

Gini(D) =

|Y|∑
k=1

∑
k′ ̸=k

pkpk′ = 1−
|Y|∑
k=1

p2k

Intuitively, Gini(D) reflects the probability of two randomly selected samples in D having different labels. The
Gini index of attribute a is defined as

GiniIndex(D, a) =

V∑
v=1

|Dv|
|D|

Gini(Dv)

and we choose a∗ = argmin
a∈A

GiniIndex(D, a) as the splitting attribute.

2.4 Pruning
In decision tree learning, the tree may be too complex and overfit the training set. Pruning is a technique to

reduce the complexity of the tree and improve the generalization performance. There are two types of pruning:

• Pre-pruning: Pruning the tree during the construction process. If the splitting of a node doesn’t
improve the generalization performance (validation set accuracy), the partitioning is stopped and the node
is turned into a leaf node.

• Post-pruning: Pruning the tree after the construction process. The tree is first constructed, and then
the nodes are pruned from leaf to root. If replacing a subtree with a leaf node improve the generalization
performance (validation set accuracy), the subtree is pruned.

5

Pros and Cons of pre-pruning and post-pruning:

• Pre-pruning lowers the risk of overfitting and the cost of constructing the tree, but may lead to underfitting.

• Post-pruning generally preserves more branches and has better generalization performance, but is more
computationally expensive (Constructing the whole tree and then traversing the tree to prune).

(a) Pre-pruning (b) Post-pruning

Figure 2: Pruning to avoid overfitting

3 Ensemble Learning
Ensemble learning is a machine learning paradigm where multiple models for the same problem are trained

and combined to improve the performance.

3.1 Boosting
Boosting is a family of incremental learning algorithms that iteratively trains a series of weak learners and

combines them to form a strong learner.

• A base learner ht is trained on the training set;

• The distribution of training set Dt is re-weighted to emphasize the samples that are misclassified by the
previous base learner;

• A new base learner ht+1 is trained on the re-weighted training set;

• The process is repeated T times.

The ensemble model is then constructed as a weighted sum of the base learners: H(x) =
T∑

t=1
αtht(x).

3.1.1 AdaBoost

One of the most popular boosting algorithms is AdaBoost (Adaptive Boosting). First we denote

• D = {(x1, y1), (x2, y2), . . . , (xN , yN)}: The training set. xi ∈ Rd is the feature vector and yi ∈ {−1, 1} is
the label.

• Dt = {wt1, wt2, . . . , wtN}: The distribution of the training set at iteration t, i.e. the weight for each data
point.

• ht(x): The base learner at iteration t.

• αt: The weight of ht in the ensemble model.

6

• ϵt: The classification error rate of ht(x).

• Ht(x): The ensemble model at iteration t.

1 def AdaBoost(D, T):
2 Initialize the distribution D1 = { 1

N
, · · · , 1

N
}

3 for t=1,2,...,T:
4 Train ht(x) : Rd → {−1, 1} on D with distribution Dt

5 ϵt =
N∑
i=1

wtiI(ht(xi) ̸= yi)

6 if ϵt > 0.5: break
7 αt =

1

2
log

1− ϵt
ϵt

8 Update the distribution: wt+1,i =
wti exp(−αtyiht(xi))

N∑
i=1

wti exp(−αtyiht(xi))

9 return H(x) = sign
(

T∑
t=1

αtht(x)

)

There are several noticable facts in the algorithm:
• Error rate: Although we allows for weak models in AdaBoost, the classification error rate of each base

learner should still be less than 0.5, otherwise the weight αt for each model would be negative.

• Weight update: The denominator Zt =
N∑
i=1

wti exp(−αtyiht(xi)) is a normalization term to ensure that

the distribution of weights is a probability distribution. We can further simplify the update of weights as

wt+1,i =
wti exp(−αtyiht(xi))

N∑
i=1

wti exp(−αtyiht(xi))

=

wti exp(−αt)

Zt
if ht(xi) = yi

wti exp(αt)

Zt
if ht(xi) ̸= yi

=

wti

√
ϵt

1− ϵt

Zt
if ht(xi) = yi

wti

√
1− ϵt
ϵt

Zt
if ht(xi) ̸= yi

Note that

Zt =

N∑
i=1

wti exp(−αtyiht(xi)) =

√
ϵt

1− ϵt

∑
yi=ht(xi)

wti +

√
1− ϵt
ϵt

∑
yi ̸=ht(xi)

wti

=

√
ϵt

1− ϵt
(1− ϵt) +

√
1− ϵt
ϵt

ϵt = 2
√

ϵt(1− ϵt)

So wt+1,i =

wti

2(1− ϵt)
if ht(xi) = yi

wti

2ϵt
if ht(xi) ̸= yi

• Weight assign: Note that wt+1,i =

wtie

−αt

Zt
if ht(xi) = yi

wtie
αt

Zt
if ht(xi) ̸= yi

, a sample that is misclassified by the base

learner ht will have a larger weight in the next iteration.
Now we will introduce the derivation of AdaBoost. The optimzation follows a forward stagewise strategy.
Instead of directly optimizing

({αt}∗, {ht(x)}∗) = arg min
{αt},{ht(x)}

N∑
i=1

L(yi,
T∑

t=1

αtht(xi))

7

we optimize the following objective function:

(α∗
t , h

∗
t) = arg min

αt,ht

N∑
i=1

L(yi,Ht−1(xi) + αtht(xi))

and iteratively update the ensemble model Ht(x) = Ht−1(x) + α∗
th

∗
t (x).

The loss function we adopt is the exponential loss function:

L(yi,H(xi)) =
1

N

N∑
i=1

exp(−yiH(xi))

Why exponential loss function?

The loss function can be written as (population version):

L(y,H(x)) = Ex∼D [exp(−yH(x))]

= e−H(x)P (y = 1|x) + eH(x)P (y = −1|x)
∂L(y,H(x))

∂H(x)
= −P (y = 1|x)e−H(x) + P (y = −1|x)eH(x) = 0

⇒ H(x) =
1

2
log

P (y = 1|x)
P (y = −1|x)

therefore

sign(H(x)) = sign
(
log

P (y = 1|x)
P (y = −1|x)

)
=

{
1 if P (y = 1|x) > P (y = −1|x)
−1 if P (y = 1|x) < P (y = −1|x)

= arg max
y∈{−1,1}

P (H(x) = y|x)

meaning that sign(H(x)) is the Bayes optimal classifier. The continous and differentiable properties of

L =
1

N

N∑
i=1

e−yiH(xi) also justifies the choice of exponential loss function.

In this case

(α∗
t , h

∗
t) = arg min

αt,ht

N∑
i=1

L(yi,Ht−1(xi) + αtht(xi))

= arg min
αt,ht

N∑
i=1

exp (−yiHt−1(xi)− αtyiht(xi))

≜ arg min
αt,ht

N∑
i=1

w̃ti exp(−αtyiht(xi))

First we solve for h∗
t :

h∗
t = argmin

ht

N∑
i=1

w̃ti exp(−α∗
t yiht(xi)) = argmin

ht

N∑
i=1

w̃ti exp (−α∗
t (1− 2I(ht(xi) ̸= yi)))

⇒ h∗
t= argmin

ht

N∑
i=1

w̃tiI(ht(xi) ̸= yi)

8

meaning that h∗
t is the base learner that minimizes the weighted misclassification error rate.

Then we solve for α∗
t :

L = w̃ti exp(−αtyih
∗
t (xi)) =

∑
yi=h∗

t (xi)

w̃tie
−αt +

∑
yi ̸=h∗

t (xi)

w̃tie
αt

=

N∑
i=1

w̃tie
−αt +

N∑
i=1

w̃ti(e
αt − e−αt)I(h∗

t (xi) ̸= yi)

∂L
∂αt

= −e−αt

N∑
i=1

w̃ti + (eαt + e−αt)

N∑
i=1

w̃tiI(h
∗
t (xi) ̸= yi) = 0

⇒ e−αt

eαt + e−αt
=

N∑
i=1

w̃tiI(h
∗
t (xi) ̸= yi)

N∑
i=1

w̃ti

=

N∑
i=1

w̃tiI(h
∗
t (xi) ̸= yi) = ϵt

⇒ αt=
1

2
log

1− ϵt
ϵt

A base model with a smaller classification error rate will have a larger weight in the ensemble model.
Last we update the distribution:

w̃t+1,i = exp(−yiHt(xi)) = exp(−yi(Ht−1(xi) + αth
∗
t (xi))) = exp(−yiHt−1(xi)) exp(−αtyih

∗
t (xi))

= w̃ti exp(−αtyih
∗
t (xi))

⇒ w̃t+1,i←
w̃t+1,i

N∑
i=1

w̃t+1,i

=
wti exp(−αtyih

∗
t (xi))

N∑
i=1

wti exp(−αtyih∗
t (xi))

(Normalization)

Boosting algorithm requires that the base learners accept weighted samples. For base learners that don’t
support weighted samples, we can address this issue by re-sampling, i.e., we can sample the training set with
replacement according to the distribution Dt to generate a new training set.

3.2 Bagging
In order to obtain a more generalized ensemble model, each base learner should be as independent as possible.

To make the base learners more diverse, one possible approach is to train them on different training sets.
Therefore, Bagging(Bootstrap Aggregating) is proposed. Given a training set D = {(xn, yn)}Nn=1, we can

bootstrap T new training sets D1, D2, . . . , DT by sampling N samples from D with replacement
each time. The probability of a sample not being selected is(

1− 1

N

)N

→ 1

e
≈ 0.368

so each new training set contains about 63.2% of the original samples. Then, we train T base learners on
D1, D2, . . . , DT respectively and combine them to form the ensemble model. For classification tasks, Bagging
uses majority voting to combine the base learners; For regression tasks, Bagging uses the average of the
predictions of the base learners.

1 def Bagging(D, T):
2 for t=1,2,...,T:
3 Sample Dt from D with replacement
4 Train ht(x) on Dt

5 return H(x) = argmax
y∈Y

(
T∑

t=1
I(ht(x) = y)

)
Classification Task

9

Moreover, since each base learner uses only 63.2% of the training set, the remaining 36.8% of the training set
can be used as a validation set to estimate the out-of-bag performance of the ensemble model. Let HOOB(x)

be the prediction of the ensemble model on the out-of-bag samples

HOOB(x) = argmax
y∈Y

(
T∑

t=1

I(ht(x) = y)I(x /∈ Dt)

)

then the error rate of the ensemble model can be estimated by

εOOB =
1

|D|
∑

(x,y)∈D

I(HOOB(x) ̸= y)

3.3 Random Forest
Random Forest is an extension for Bagging. In Random Forest, each base learner is a decision tree. To

make the base learners more diverse, Random Forest introduces a randomization strategy:

• Random feature selection: Compared to traditional decision tree training, we first randomly select k

features from total d features, and then choose the best splitting attribute from the k features.

Conventionally k = log2 d is a good choice. So in Random Forest model, the randomness not only comes
from the bootstrapped training set, but also from the random feature selection, which makes the
base learners more diverse.

3.4 Ensemble Strategies
Suppose the ensemble model contains T base learners {h1, h2, . . . , hT }, and ht(x) is the output on the data

point x.
For numerical output ht(x) ∈ R

• Averaging: H(x) =
T∑

t=1
wtht(x)

For categorical output ht(x) ∈ Y = {c1, · · · , cN}, denote the output of base learning ht on data point x as a
vector ht(x) = [h1

t (x), h
2
t (x), · · · , hN

t (x)]. Each element hj
t (x) can be a hard label (hj

t (x) ∈ {0, 1}) or a soft
label (hj

t (x) ∈ [0, 1]).

• Majority Voting: vote cj if it receives more than half of the votes. Reject to predict if there’s no ”majority”.

H(x) =

cj if
T∑

t=1
hj
t (x) ≥ 0.5

N∑
k=1

T∑
t=1

hk
t (x)

Reject otherwise

• Plurality Voting: vote cj if it receives the most votes H(x) = c
argmax

j

T∑
t=1

hj
t(x)

• Weighted Voting: vote cj if it receives the most weighted votes H(x) = c
argmax

j

T∑
t=1

wth
j
t(x)

References
• Machine Learning, Zhi-Hua Zhou

• AdaBoost: Algorithm and Derivation

10

https://doi.org/10.1007/978-981-15-1967-3
https://cloud.tencent.com/developer/article/1051863

	Information Theory
	Decision Tree
	Iterative Dichotomiser 3 (ID3)
	C4.5
	CART (Classification and Regression Trees)
	Pruning

	Ensemble Learning
	Boosting
	AdaBoost

	Bagging
	Random Forest
	Ensemble Strategies

