Lecture 2: Mathematical Preliminaries for ML
Shukai Gong

Not all required mathematical preliminaries are included in the sections above. It’s just a reminder of some of
my rusty math knowledge.

1 Norm

1. Vector Norms: A norm is a function || - || : CV ~ R satisfying
1. ||zl >0 and ||z|| =0if =0
2. |lax| = |a|||z| for any o € C
3. |z +yl <|z| + |yl (triangle inequality)

Commonly-used Vector Norms:

N
lo-norm: |lz|jo = >_ I(z; # 0)(number of non-zero elements)
i=1

N N N 1
fnorm: [zl = 3 [ail, fornorm: o = (3 |2if?)?, rnomm: ], = (3 [aif?)?
i i i=1

i=1 i=1

loo-norm: ||||co =  max |z
i=1,- N

) )

o Weighted norm: ||z||w = |Wz||

M N
o Frobenius norm: || X||p = /> > |zi;|?
i=14=1
A
2. Induced Matrix Norms: ||Al|, = max 1A= = max |[Ax||
z£0 ||z |l||=1

o ||Alls = max ||a;||1, where a; is the i-th column of A
7

o ||All2 = +/p(A® A), where p(-) is the spectral radius.

e |A|leo = max |Ajll1, where A; is the j-th row of A
Some properties of induced matrix norms:

+ Consistency: |[Az|| < [|Allllz], |AB| < [|A[|B]

o If A is a diagonal matrix, then ||A|, = max ||

o When A = a is a vector, ||A|2 = ||a||2

e If A=wuv! is a rank-1 matrix, then || Alz = ||ull2/|v||2



2 Algebra

1. Vector products: given a,b € RV
N
1. Inner product: a'b=a-b{a,b) = > a;b;

2. Outer product: ab' =a®b = [a;b;] € RNV

2. Matrix products: given A, B € RM*N

M N
1. Inner product: (A,B) =tr(A"B) =Y 3 a;;bij
i=1j=1

2. Outer product: A ® B = [a;;by] € RMN*MN
3. Kronecker product: A ® B = [a;;by] € RM*xN?
3. Orthognal vector and matrix:
¢ Orthognal vector:
— a,b € RY are orthogonal if a™b =0 and ||a|2 # 0, ||b|2 # 0
— a,b € CV are orthogonal if a®’b = g:laibi =0 and |lall2 #0,||b]]2 #0
i=
— H represents Hermitian transpose for matrix (or vector) A € CM*N
« Orthonormal vector: a,b are orthonormal if a”b = 0 and ||al| = ||b]|2 = 1
« Orthognal matrix: A is orthogonal if ATA =1 ie. AT =A!
— Norm preserving: ||Az||2 = ||z||2 if A is orthogonal

4. Inverse Matrix: A matrix which has an inverse is called non-singular, otherwise singular. A~ exists
<= det(A) #0

+ Ill-conditioned matrix: A is close to being singular, that x(A) = || A||||A ™| is large.
+ Pseudo-inverse: A™ = (A" A)"'A", where A could be non-square.
— It can be shown that AT A = I provided that A" A is non-singular.
5. Linear Systems: Ax =b, A ¢ RM*N 2 c RN becRM

e A is a linear mapping: = — Ax
N
e bis a linear combination of columns of A: b= > z;a;
i=1
There are 3 key tasks of linear systems
A x = b

System Input Output

o Inverse Problem: Given A and b, solve  or mind(Az,b)
x

o Modelling: Given sets of b’s(Denote B) and x’s(Denote X), solve A or H}4in d(AX, B)

o Factorization: Given B, solve the decompostion/factorization B = AX or gng d(AX,B)



6. Range and Null Space:
e Range(A) = Im(A) = {Azx : £ € RV}, ie. the column space of A
e Null(A) ={x: Az =0}

7. Components of a vector: Let S = span{qi,--- ,qn} where q1,--- ,qnN is an orthonormal set in R™.
Then for any v € R™, we have the decompostion of v as shown below

v=> (v,q:)qi+_r
=1 es cst

Vv

r
S
= i(q‘iav>qi ‘\

d1 > o

N
e The residual of v € R™ w.r.t. the set q1,--+ ,gn: T =v— > (v,¢;) q;

i=1

2.1 Eigenvalue Decomposition(EVD)

Eigenvalue Decomposition/Spectrum Decomposition

If A € R is symmetric, denote the orthonormal eigenvectors of A as Q = [q1, - ,qn], and the
corresponding eigenvalues as A = diag(A1, -+, A,), we can write
A=QAQ"

The steps of EVD are as follows

1. Find the eigenvalues: By solving the characteristic equation det(A — AI) = 0, we get A1, , A\; where
the sum of all algebraic multiplicity m(\;) is n.

2. Find the eigenvectors: For each \;, solve the equation (A—A;I)g; = 0, we get V11, , V1ing, s Us1, ** , Vsn,
where the sum of all algebraic multiplicity m(\;) is n.

3. Orthogonalize the eigenvectors: Use Gram-Schmidt process to orthogonalize v11,* ,Vin,, " ,Vs1, ** , Usn,

into q11," " sq1n,, " Vg1, , Ugng

4. Form the matrix Q: Q = [q11, " ,q1n., " Vg1, " ,Vgn,], We have QTAQ = diag(A1, -+, An) =
A= A=QAQ"



2.2 Singular Value Decomposition(SVD)

Singular Value Decomposition(SVD)

For any A € R™*"™ we can write
T
A=USV' =) ouv/
i=1

where U € R™*™ and V € R™ " are orthogonal matrices, and 3 € R™*" is a diagonal matrix with
the singular values of A o; on its diagonal, u;, v; are the i-th columns of U and V. Only the first
r = rank(A) singular values are non-zero and by convention, they are ordered in non-increasing order:
012092 " 20p>0pr41 =" = Omin{m,n} = 0-

Observe that the SVD factors provide eigendecomposition for AT A and AAT:

ATA=wuzvHTwzvH)=vz'u'usv'=vEZ) Vv =vA V'
AAT = UzvHoEv)T =Uusv' v U =UEE U =UAU "

It follows immediately that the columns of V' are eigenvectors of AT A and the columns of U are
eigenvectors of AA".

The non-zero singular values of A are the square roots of the non-zero eigenvalues of AT A and AA".

The steps of SVD are as follows

1. Find the orthogonal eigenvectors of (ATA)an: V = [v1,- - ,vy,], where v; is the i-th orthogonal
eigenvector of ATA.

2. Find the orthogonal eigenvectors of (AAT)me: U =[uy, - ,Upm], where u; is the i-th orthogonal
eigenvector of AA".

[ Avi|2

3. Form the singular value matrix 3: A = USV'T = AV = UX = Av; = o,u; = 0; = lvill2
ill2

and then we can form X = diag(oy,--+ ,0.,0,---,0)

3 Matrix Calculus

1. Gradient:
e« Matrix Gradient: Suppose that f : R"™*" i— R, then the gradient of f w.r.t. A € R™*" is defined as

of(A)  0f(A)

Oaq1 Oay,
Vaf(A)=| i .. i |erm
of(4)  9f(4)
aaml aarnn

e Vector Gradient: Suppose that f: R" — R, then the gradient of f w.r.t. € R" is defined as

of ()
Bxl
of ()

0xy,

c Rnxl



e Suppose [ : R"™ +— R™, then the gradient of f w.r.t. @ € R” is defined as

ofi=)  Ofi(z)
8$1 813” v:ﬂfl($>T
Vof()=| + . 1 = : =Jj(x) e R™"
Ofm(x)  Ofm(z) Vafon(2)T
8501 8:z:n

2. Basic Facts about Matrix Derivatives:

ox'a Oa'x

or Oz
ox' Ax T
2. =(A+ A
p (A+A )z
aaTXb T
9aT X b T
4. 87)( = ba
da"Xa 0a"X'a .
5. = =aa
0X 0X
3. Hessian Matrix: Suppose that f: R® — R, then the Hessian matrix of f w.r.t. € R" is defined as
0*f(z) 0% f(z)
or? 0z10xy,
Vef(@=| .. 1 | ERM
0*f(x) 0*f(x)
0z, 0z 0x2

4 Probability and Statistics

A typical ML scenario (X, dx, jux) requires us to estimate py via a model pg based on data X = {z;}, C X.

4.1 Law of Large Numbers and Central Limit Theorem
1. LLN explains why ML requires lots of data: For X = {z;}Y, C X
« WLLN: X, 5 1

e SLLN: X, %

2
. . g

o Variance reduction: Var(X,)=— —0asn — o
n

2. CLT provides ML with Gaussian Distribution:

|

07\/5# 4 N(0,1)




4.2 Method of Moments(MoM)
Suppose that we have a set of i.i.d. data X = {x;}}¥; C X drawn from a distribution P(X|0) with [ parameters
0= (017... ,Ql).

1. Compute the first [ moments as functions of 6
i = BX) = [ aP(alo)de = (61, .6,)
Y

L2 :E[XQ} :/ w2p($|0)d$ :g2(917"' aan)
X

=B = [ o' Plal6)de = (6, .00)
X

2. Algebraically invert the linear system of [ equations to solve for 61, --- 6, as functions of puy,--- , 1y

01 = hy(pa, -~ )
92:}7’2(/’&1’"' 7/”'1) (*)

O = ha(per,--- )

x¥ into (*) to obtain MoM estimators 6y, - - - , 0,

1
3. Insert sample moments i, = N

M=

i=1

Drawbacks of MoM
1. High computation load

2. Lack of extensibility

3. MoM estimators may not exist as the linear system of u = G may has no solution=-Can only be used

to estimate simple distributions with few parameters

4.3 Maximum Likelihood Estimation
Suppose that we have a set of i.i.d. data X = {x;}Y; C X, we assume that the samples are sampled from a

distribution P(x|0)(a model with parameter 6).

Principle: Assume a deterministic model and learn the model via maximum likelihood estimation (MLE)

N N
OrrLe = arg mgxleog P(X|0) = argmgmelog P(x;|0)

i=1 i=1
e Pros: more efficient in general, avoid the design of prior.

« Cons: non-robust to sparse data, not easy to quantify the uncertainty of the estimation (doable, but not

efficient).



4.4 Bayesian Estimation

Principle: Assume a probabilistic model and the model 6 yields a prior distribution.

According to the Bayes’ theorem, we have

P(X|0)P(6)
Posterior Likelihood 6 prior 6

e The influence of prior decays with the increase of the number of samples.

MAP estimation: 0y, 4p = arg max P(0|X) = arg max P(X10)P(0)

o Pros: prior makes it (relatively) robust to sparse data, quantify the uncertainty of the estimation (obtain
the distribution of 6)

e Cons: require sophisticated design of prior, time-consuming in general.
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