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1 Polynomial Regression

Polynomial Regression

A polynomial with N − 1 degrees is:

p(x) = c0 + c1x+ c2x
2 + · · ·+ cN−1x

N−1 =

N∑
j=1

cj−1x
j−1 = x⊤c

Given a set of data X = {xi}Ni=1 ⊂ X , then the polynomial regression model is

p(x) = Xc

where X can be expressed as a Vandermonde matrix X =


1 x1 x2

1 · · · xN−1
1

1 x2 x2
2 · · · xN−1

2
...

...
... . . . ...

1 xN x2
N · · · xN−1

N

. Our goal is to

find the optimal coefficients c.

Naive Learning Strategy from MLE viewpoint

Given labeled data {xi, yi}Ni=1, we want to train a D-th order polynomial regression model

p(x) =

D∑
j=1

wj−1x
j−1 + ϵ

Assume noise ϵ ∼ N (0, σ2). Recall that y = x⊤w + ϵ ⇒ y − x⊤w ∼ N (0, σ2). Then we have

p(y|x,w) = p(y − x⊤w) =
1√
2πσ

exp

(
− (y − x⊤w)2

2σ2

)
Given i.i.d. {xi, yi}Ni=1, by MLE, the objective function is

max
w

N∏
i=1

p(yi|xi,w) ⇐⇒ min
w

−
N∑
i=1

log p(yi|xi,w)

⇐⇒ min
w

1

2σ2

N∑
i=1

(yi − x⊤
i w)2 − Const.

⇐⇒ min
w

‖y −Xw‖22

So we can learn the model via min
w

‖y −Xw‖pp︸ ︷︷ ︸
L(w,X,y)

. Specifically, we have

∂L(w,X, y)

∂w
= −2X⊤(y −Xw) = 0 ⇒ w = (X⊤X)−1X⊤y

Time Complexity: The operations involved to computed w∗ = (X⊤X)−1X⊤y is O(ND2 +D3)
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Stochastic Gradient Descent(SGD)

1. Initialize w(0) randomly

2. At iteration t, sample a batch of data {xi, yi}Bi=1 randomly

3. Compute the gradient ∂L

∂w
= 2X⊤

B(XBwt−1 − yB)

4. Update wt = wt−1 − τ
∂L

∂w

2 Ordinary Linear Regression(OLR) and General Linear Model(GLM)

Linear Regression: OLR

Given arbitary ND-dimensional data X ∈ RN×D and their corresponding labels y ∈ RN , the OLR
model is

y = x⊤w + ϵ

And we learn the model via max
w

p(y|X,w) ⇐⇒ min
w

‖y −Xw‖22.

[Note]: X are random variables, and a linear regression is interested in E[y|X].

Linear Regression: GLM

A natural extension of OLR, the general form is:

g(E[y|X]) = Xw

• Linear Predictor: η = Xw

• Link Function: g(·). The link function connecting the prediction η and the conditional expecta-
tion E[y|X] can be nonlinear.

• Distribution Family: An exponential family of probability distributions to generate the out-
put.

From the prospective of GLM, OLR (y = x⊤w + ϵ) is a special case of GLM:

1. Linear Predictor: η = x⊤w

2. Link Function: g−1(η) = η

3. Distribution Family: y ∼ N (x⊤w, σ2)

The selection of link function is highly relevant to the distribution type: for y = g−1(x⊤w) ∼ P

• Poisson Distribution: g(·) = log(·)

• Gamma Distribution: g(·) = 1

·
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The trade-off between bias and variance

Suppose that w is the ground truth parameter of a linear model. A set of data (X, y) are observed
and yield

y = x⊤w + ϵ = fw(x) + ε, ε ∼ N (0, σ2)

And ŵ is the estimator obtained based on the data.

MSE = E[(y − ŷ)2] = E[(fw(x) + ε− fŵ(x))2]

= E[(fw(x)− fŵ(x))2] + E[ε2] + 2E[(fw(x)− fŵ(x))ε]

= E[(fw(x)− fŵ(x))2] + σ2

= E[(fw(x)− E[fŵ(x)] + E[fŵ(x)]− fŵ(x))
2
] + σ2

= E[(fw(x)− E[fŵ(x)])2] + E[(E[fŵ(x)]− fŵ(x))2] + 2E[(fw(x)− E[fŵ(x)])(E[fŵ(x)]− fŵ(x))]︸ ︷︷ ︸
=0

+σ2

= E[(fw(x)− E[fŵ(x)])2] + E[(E[fŵ(x)]− fŵ(x))2] + σ2

= (fw(x)− E[fŵ(x)])2︸ ︷︷ ︸
Bias2(fw(x),fŵ(x))

+E[(fŵ(x)− E[fŵ(x)])2]︸ ︷︷ ︸
Variance(fŵ(x))

+ σ2︸︷︷︸
Irreducible Noise

This shows a trade-off between bias and variance:

• Bias ⇒ Underfitting: A high bias indicates that the model is too simple and is missing relevant
relations between input and output variables.

• Variance ⇒ Overfitting: A high variance indicates that the model is highly sensitive to the specific
data it was trained on and does not generalize well to new data in the input data.

Our goal: minimize MSE so as to strike a balance between bias and variance.

Underfitting and Overfitting:

• Underfitting: Model complexity � data complexity, the number of model parameters is smaller than
that of data points

• Overfitting: Model complexity � data complexity, the number of model parameters is larger than that
of data points

– Possibility 1: The model is too complex, need simplification.
– Possibility 2: The model is reasonably complex, but the data are insufficient.

3 Ridge Regression

Ridge Regression

To learn complicated models from relatively sparse data, Ridge Regression is introduced to impose
side information on the model paramters. Ridge Regression targets at minimizing MSE with L2

regularization:

min
w

L(w) = min
w

‖y −Xw‖22 + λ‖w‖22

which consider the data fidelity and penalize the energy of parameters.

3



Bayesian Viewpoint of Ridge Regression

The principle of Ridge Regression can be considered in a Bayesian viewpoint. Assume noise
y − x⊤w = ϵ ∼ N (0, σ2) and weight has a Gaussian prior w ∼ N (0, γ2I). Then by MAP

max
w

p(w|X,y) ∝ max
w

p(y|X,w)p(w)

⇒max
w

N∏
i=1

p(yi|xi,w)p(w)

⇒min
w

−
N∑
i=1

log p(yi|xi,w)− log p(w)

Note that
n∑

i=1

log p(yn|xn,w) =

n∑
i=1

log
1√
2πσ

exp

(
− (yi − x⊤

i w)2

2σ2

)

= − 1

2σ2

n∑
i=1

(yi − x⊤
i w)2 + Const.

= − 1

2σ2
‖y −Xw‖22 + Const.

log p(w) = log
1

(2π)
D
2 |γ2I| 12

exp

(
−w⊤(γ2I)−1w

2

)
= log

1

(2π)
D
2 |γ2I| 12

− 1

2γ2
w⊤w

= − 1

2γ2
‖w‖22 + Const.

Therefore, the objective function can be written as

min
w

1

2σ2
|y −Xw|22 +

1

2γ2
‖w‖22 + Const.

Here, 1

2σ2
‖y − Xw‖22 is the likelihood term, and 1

2γ2
‖w‖22 is the regularization term. γ is the hyper-

parameter corresponding to λ in the original Ridge Regression expression above that controls the strength of
the regularization,

• λ = 0: Ridge Regression degenerates to OLR.

• λ → ∞: w → 0. Intuitively, to minimize L(w), w should be close to 0 to cancel out the penalization
effect brought by λ.

Closed-form solution for Ridge Regression

The closed form solution of Ridge Regression is given by

∂L

∂w
= −2X⊤(y −Xw) + 2λw = 0 ⇒ w = (X⊤X + λI)−1X⊤y
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Tikhonov Regularization

A variant of Ridge Regression use Tikhonov Regularization, shown as below

min
w

‖y −Xw‖22 + λ‖Γw‖22

where ΓD×D is a Tikhonov matrix. The closed form solution of Tikhonov Regularization is similarily
given by w = (X⊤X + λΓ⊤Γ)−1X⊤y.

4 LASSO Regression

LASSO Regression

LASSO(Least Absolute Shrinkage and Selection Operator) Regression targets at minimizing MSE

with L1 regularization:

min
w

L(w) = min
w

1

2
‖y −Xw‖22 + λ‖w‖1

Bayesian Viewpoint of LASSO Regression

The principle of LASSO Regression can be considered in a Bayesian viewpoint. Assume
noise y − x⊤w = ϵ ∼ N (0, σ2) and weight has a Laplace prior w ∼ L(0, bI). Then similarly, by
MAP

max
w

p(w|X,y) ∝ max
w

p(y|X,w)p(w)

⇒max
w

N∏
i=1

p(yi|xi,w)p(w)

⇒min
w

−
N∑
i=1

log p(yi|xi,w)− log p(w)

Note that

log p(w) = log
1

(2b)D
exp

(
−‖w‖1

b

)
= −1

b
‖w‖1 + Const.

Therefore, the objective function can be written as

min
w

1

2σ2
|y −Xw|22 +

λ

b
‖w‖1 + Const.

Closed-form solution for LASSO

The closed-form solution of LASSO Regression can be obtained by soft-thresholding: When
X = [x1, · · · ,xD] ∈ RN×D are orthonormal, i.e. X⊤X = ID, the closed-form solution of LASSO
Regression under soft-thresholding can written as

ŵ∗
d = Sλ(ŵOLS,d) = sign(ŵOLS,d) ·max{|ŵOLS,d| − λ, 0}, d = 1, 2, · · · , D
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Note that wOLS = (X⊤X)−1X⊤y = X⊤y. We can take the derivative of L(w) with respect to w:

∂L(w)

∂w
= −1

2
· 2X⊤(y −Xw) + λ · sign(w)

= X⊤Xw −X⊤y + λ · sign(w)

= w −X⊤y + λ · sign(w)

⇒ w∗ = wOLS − λ · sign(w∗)

where sign(x) =


1, x > 0

any value between [−1, 1], x = 0

−1, x < 0

. Since L1 is separable and thus we consider each of its

components separately, so we consider the i-th component of w:

w∗
i = wOLS,i − λ · sign(w∗

i )

Note that when w∗
i 6= 0

w∗
i < 0, wOLS,i − λ(−1) < 0 ⇒ wOLS,i < −λ

w∗
i > 0, wOLS,i − λ(1) > 0 ⇒ wOLS,i > λ

Therefore, when |wOLS,i| > λ > 0, it’s equivalent to write

w∗
i = wOLS,i − λ · sign(wOLS,i)

When w∗
i = 0, it follows that

0 ∈ wOLS,i − λ · [−1, 1] ⇒ |wOLS,i| ≤ λ

So that

w∗
i = Sλ(wOLS,i) =

{
wOLS,i − λ · sign(wOLS,i), |wOLS,i| > λ

0, |wOLS,i| ≤ λ

=

{
wOLS,i · sign(wOLS,i)− λ · sign(wOLS,i), |wOLS,i| > λ

0, |wOLS,i| ≤ λ

= sign(wOLS,i) ·max{|wOLS,i| − λ, 0}

Hence the closed-form solution of LASSO Regression under soft-thresholding can written as

w∗
d = Sλ(wOLS,d) = sign(wOLS,d) ·max{|wOLS,d| − λ, 0}, d = 1, 2, · · · , D

Iterative soft-thresholding for general situations

More generally, when X⊤X 6= ID, we can construct orthonormal vectors column-wisely and update
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parameters iteratively. In the t-th iteration, we update all d = 1, · · · , D-th parameter by

ŵ
(t+1)
d = argmin

w

1

2
‖y −

∑
i ̸=d

xiw
(t)
i − xdw‖22 + λ|w|

= argmin
wd

1

2
‖y −X−dw

(t)
−d − xdw‖22 + λ|w|

= argmin
wd

1

2
‖ 1

‖xd‖2
(y −X−dw

(t)
−d)− w · xd

‖xd‖2
‖22 + λ

|w|
‖xd‖22

= S λ

∥xd∥2
2

(
x⊤
d (y −X−dw

(t)
−d)

‖xd‖22

)

Denote e(t) = y − X−dw
(t)
−d, then the update rule can be written as

S λ

∥xd∥2
2

(
x⊤
d (y −X−dw

(t)
−d)

‖xd‖22

)
= sign(x

⊤
d e

(t)

‖xd‖22
) ·max{ |x

⊤
d e

(t)|
‖xd‖22

− λ

‖xd‖22
, 0}

One can easily tell that to compute the d-th dimension of w(t+1), we need to use all the dimensions of
w(t).

Proof. Our goal is to minimize the following objective function

L(w) =
1

2
‖ 1

‖xd‖2
(y −X−dw

(t)
−d)− w · xd

‖xd‖2
‖22 +

λ

‖xd‖22
|w|

Recall that when the column vectors X = [x1, · · · ,xD] ∈ RN×D are orthogonal, we can use closed form solu-
tion for LASSO by soft thresholding straightforwardly. Here, since we are iteratively constructing orthonormal
vectors xd

‖xd‖2
column-wisely when optimizing each ŵd

(t+1), we can first calculate ŵOLS,d and plug it into the

soft-thresholding function Sλ(·) to get the optimal ŵ(t+1)
d .

L(w) =
1

2‖xd‖2

(
y − X−dw

(t)
−d − w · xd

)⊤ (
y − X−dw

(t)
−d − w · xd

)
+

λ

‖xd‖22
|w|

=
1

2‖xd‖2
(y⊤y − y⊤X−dw

(t)
−d − y⊤wxd − (w

(t)
−d)

⊤X⊤
−dy + (w

(t)
−d)

⊤X⊤
−dX−dw

(t)
−d + (w

(t)
−d)

⊤X⊤
−dwxd

− wxd
⊤y + wxd

⊤X−dw
(t)
−d + w2xd

⊤xd) +
λ

‖xd‖22
|w|

⇒ ∂L(w)

∂w
=

1

2‖xd‖2
(−2y⊤xd + 2(w

(t)
−d)

⊤X⊤
−dxd + 2wxd

⊤xd) +
λ

‖xd‖22
sign(w) = 0

=
1

‖xd‖2
(wxd

⊤xd + xd
⊤(X−dw

(t)
−d − y)) +

λ

‖xd‖22
sign(w) = 0

Denote L′ =
1

2
‖ 1

‖xd‖2
(y−X−dw

(t)
−d)−w · xd

‖xd‖2
‖22, λ′ =

λ

‖xd‖22
. We can derive the OLS estimator ŵOLS,d by

taking the derivative of L′ w.r.t w:

∂L′

∂w
=

1

‖xd‖2
(wxd

⊤xd + xd
⊤(X−dw

(t)
−d − y)) = 0 ⇒ ŵOLS,d =

xd
⊤(y −X−dw

(t)
−d)

‖xd‖22
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Plug ŵOLS,d into the soft thresholding function Sλ′(·), we can get the optimal ŵ(t+1)
d :

ŵ
(t+1)
d = Sλ′(ŵOLS,d) = S λ

∥xd∥2
2

(
x⊤
d (y −X−dw

(t)
−d)

‖xd‖22

)

4.1 Achieving Model/Feature Selection Explicitly
This is achieved by minimizing MSE with an explicit sparsity constraint

min
w

‖y −Xw‖22 s.t. ‖w‖0 ≤ L

• Because w is sparse, some features are ignored, leading to feature selection.

• Because w is sparse, the number of model parameters is regularized, leading to model selection.

4.2 Ways of Dealing with Outliners

Iteratively Reweighted Least Squares

Denote αn(w
(t)) = |yn − x⊤

nw
(t)|−1 with αn(w

(0)) = 1, the t-th iteration of IRLS is given by

w(t+1) = argmin
w

N∑
n=1

αn(w
(t))|yn − x⊤

nw|2

Denote α(w(t)) =


α1(w

(t))

α2(w
(t))

...
αN (w(t))

, where αn(w
(t)) is the t-th iteration of n-th dimension, we can write the

objective function as

w(t+1) = argmin
w

N∑
n=1

(√
αn(w(t))

)2

|yn − x⊤
nw|2

= argmin
w

‖diag
(
α(w(t))

) 1
2 · (y −Xw)‖22 = argmin

w
‖(A(t))

1
2 (y −Xw)‖22

where A(t) = diag(α(w(t))) =


1

|y1 − x⊤
1 w

(t)|
· · · 0

... . . . ...
0 · · · 1

|yN − x⊤
Nw(t)|

. To derive the closed-form itera-

tive steps of IRLS, we first denote

L = ‖(A(t))
1
2 (y −Xw)‖ = (y⊤ − w⊤X⊤)((A(t))

1
2 )⊤(A(t))

1
2 (y −Xw)

= (y⊤ − w⊤X⊤)A(t)(y −Xw)

= y⊤A(t)y − y⊤A(t)Xw −w⊤X⊤A(t)y +w⊤X⊤A(t)Xw

∂L

∂w
= −2X⊤A(t)y + 2X⊤A(t)Xw = 0

⇒ w(t+1) = (X⊤A(t)X)−1X⊤A(t)y

Since we know w(t) and A(t), we can calculate w(t+1) iteratively.
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Explanation: The idea of IRLS is to simply treat w∗ = argmin
w

N∑
n=1

|yn − x⊤
nw|2, but with a weight

αn(w
(t)) attached to each n. The initial weights are set as α = 1. In each iteration, we can lower an

observation’s importance (i.e. weight) by αn(w
(t)) = |yn −x⊤

nw
(t)|−1 if it has a large residual

(i.e. outliners).

• Naturally, IRLS works for p-norm with p < 2: α
(t)
n = |yn − x⊤

nw
(t)|p−2.

4.3 Comparison between Ridge and LASSO
Ridge Regression

• Penalize the energy of parameters.

• Strictly convex and easy to solve with linear convergence

LASSO Regression

• Convex but nonsmooth, relatively hard to solve with sublinear convergence.

• Penalize the sparsity of parameters ⇒ beneficial for model and feature selection for high dimen-
sional data with p features � n data points.

As is shown in the picture above, the feasible region of LASSO is a diamond, and the solution is likely to be
on the axis, meaning that some wi are set to 0, while the feasible region of Ridge is a circle, and the
tangency point is likely to be on the circle, making it harder to set wi = 0.
In summary, the sparsity essence of LASSO can set some wi = 0, which is equivalent to feature selection.

5 Elastic Net Regularization

Elastic Net Regularization

Elastic Net Regularization is a combination of L1 and L2 regularization:

min
w

L(w) = min
w

1

2
‖y −Xw‖22 + λ1‖w‖1 + λ2‖w‖22
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Closed-form solution for Elastic net Regularization

The basic idea is to integrate the L2 regularization term into MSE ‖y − Xw‖22 and then apply the
iterative soft-thresholding w.r.t. L1 regularization. Note that the term λ2‖w‖22 can be written as

λ2‖w‖22 = ‖
√

λ2w‖22 = ‖0D −
√
λ2IDw‖22

where 0D is a D-dimensional zero vector and ID is a D×D identity matrix. We can therefore integrate
the L2 regularization term into the MSE term as

1

2
‖y − Xw‖22 + ‖0D −

√
λ2IDw‖22 + λ1‖w‖1

=
1

2
‖y − Xw‖22 +

1

2
‖0D −

√
2λ2IDw‖22 + λ1‖w‖1

=
1

2

∥∥∥∥[ y

0D

]
−
[

X√
2λ2ID

]
w

∥∥∥∥2
2

+ λ1‖w‖1

And this goes back to L1 regularization situation and we can put new matrix

X′ =

[
X√
2λ2ID

]
,y′ =

[
y

0D

]
into the iterative soft-thresholding solver for LASSO.

6 Kernel Regression

6.1 Kernel
Practically, it’s hard to achieve linear dependence and seperation of data in low dimensional spaces since their
ability to represent data has reached the limit. An intuitive method of solving this problem is to map the data
into a higher dimensional space where the data is linearly separable.

We need to find an appropriate mapping from low dimensional space to high dimensional space, making the
mapped data somehow ”linear seperable”. The ”mapping” can be achieved by ”kernel”.

Kernel

Define a evaluation function Lx on Hilbert Space H

Lx : H 7−→ R
ϕ 7−→ Lx(ϕ) = ϕ(x)
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where Lx is a bounded operator on H. Consider the inner product on H, satisfying

∀x ∈ X , ∃Mx > 0, ∀ϕ ∈ H, |Lx(ϕ)| ≤ Mx〈ϕ, ϕ〉H

∀x ∈ X , ∃Kx ∈ H, such that

f(x) = Lx(f) = 〈f,Kx〉H =

∫
y∈X

f(y)Kx(y)dy

Then we can define a Reproducing Kernel K on H,

K : X × X 7−→ R
(x,y) 7−→ K(x,y) = 〈Kx,Ky〉H = Kx(y) = Ky(x)

The Hilbert Sapce H is called Reproducing Kernel Hilbert Space (RKHS) with the reproducing
kernel K.

Feature Space

Define a mapping

ϕ : X 7−→ H
x 7−→ Kx

Since we have finite data point, the Feature Space can be expressed as

F = span{{Kx}x∈X } ⊂ HK

that the feature space is a subspace of the RKHS.

The intuition of kernel is that it measures the similarity between two inputs x, z in characteristic space H.

• Feature mapping function ϕ(x) maps input x to a higher dimensional space H.

• Kernel function K(x, z) calculates the inner product of x and z in high dimensional space H without
knowing the explicit form of ϕ(x).

• Inner product 〈ϕ(x), ϕ(z)〉H usually measures the similarity between x and z in H. For example, in
Euclidean Space, the inner product is the square of the Euclidean distance.

Valid Kernel Function

Valid Kernel Functions should satisfy:

(1) The Gram matrix K = [K(xi,xj)] ∈ RN×N is positive definite.
⇐⇒ (2) Mercer’s Theorem: for all square-integrable function g(x)∫

X×X
g(x)K(x, z)g(z)dxdz ≥ 0

[Note]: Some common kernel functions include

• Linear Kernel: K(x, z) = x⊤z

• Polynomial Kernel: K(x, z) = (x⊤z)d where d is the degree of polynomial
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• Radial Basis Function Kernel: K(x, z) = exp

(
−‖x− z‖22

2σ2

)
where σ > 0 is the bandwidth

• Laplace Kernel: K(x, z) = exp

(
−‖x− z‖1

σ

)
where σ > 0 is the bandwidth

• Sigmoid Kernel: K(x, z) = tanh(αx⊤z + θ) with α > 0 and θ < 0

The properties of kernel functions include: if K1 and K2 are valid kernel functions, then

• Linearity: αK1(x, z) + βK2(x, z) is a valid kernel function.

• Product: K1(x, z)K2(x, z) is a valid kernel function.

• ∀f(x), f(x)K1(x, z)f(z) is a valid kernel function.

6.2 Nadaraya-Watson Kernel Regression

Nadaraya-Watson Kernel Regression

Given {xn, yn}Nn=1, for arbitary new input x, its output y can be estimated by

ŷ = f̂h(x) =

N∑
n=1

κh (x− xn)
N∑

n=1
κh (x− xn)

· yn

where κh(x) is the kernel function with bandwidth h.

[Note]: The notion of f̂h(x) is that it uses a measure function (kernel) to measure the similarity between x and
xn, and then use the similarity to weigh the output yn to get the output y.

Representor Theorem

A minimizer f∗ of a regularized empirical risk functional defined over a RKHS can be represented
as a finite linear combination of kernel products evaluated on the input points in the training set
data. Mathematically,

f∗ := arg min
f∈HK

Ex,y∼PD [Loss(y, f(x))] +R(f) ⇐⇒ ∃α ∈ RM , s.t.f∗(x) =

M∑
n=1

αnK(x, xn), M ≤ |D|

6.3 Kernel Ridge Regression

Closed-form Solution for Kernel Ridge Regression

Our model is y = f(x) + ϵ, ϵ ∼ N (0, σ2), f ∈ HK . Given {xn, yn}Nn=1, the objective function is

f∗ = min
f∈HK

N∑
n=1

(yn − f(xn))
2 + λ‖f‖2HK

By Representor Theorem, we have

f∗(x) =

N∑
n=1

αnK(x,xn)

12



Then, we rewrite the objective function by replacing f with its representation

N∑
n=1

(yn −
N∑

m=1

αmK(xn,xm))2 + λ

N∑
n=1

N∑
m=1

αnαmK(xn,xm)

=

N∑
n=1

(yn −K⊤
nα)2 + λα⊤Kα (Here K ∈ RN×N ,K⊤

n ∈ R1×N , the n-th row of K)

=‖y −Kα‖22 + λα⊤Kα

Therefore, our optimization target is

α∗ = argmin
α

‖y −Kα‖22 + λα⊤Kα

We take the gradient of loss function to get the closed-form solution of α∗

∂L

∂α
=2(−K)⊤(y −Kα) + λ(K +K⊤)α = −2K⊤y + 2K⊤Kα+ λ2Kα

=2
(
(λK +K⊤K)α−K⊤y

)
=2
(
(λK +K2)α−Ky

)
=2 ((λI +K)Kα−Ky) = 0

⇒ α∗ =(λI +K)−1y

Although we have no knowledge of the concrete form of mapping ϕ, we can still do calculations in
the feature space F and solve the optimization problem by the self-defined inner product matrix
K. This is what we called as kernel trick.

Essentially, we can equate a non-linear regression problem to a linear regression problem in the feature space F
by kernel trick. Specifically, when we use linear kernel K(x,y) = x⊤y, the kernel ridge regression degenerates
to ridge regression in the original space.
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