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1 Curse of Dimensionality
We have mentioned in Section ?? that high-dimensional data has stronger data representation ability and bring
about more potentials to our model. However, high-dimensional data also has some drawbacks.

Combinatorial Explosion (Discrete Example)

The number of different d−dimensional binary vectors is 2d. Each addtional dimension doubles the effort
needed to try all combinations.
(The search space of chess)

High Dimensional Sampling (Continous Example)

Sampling N samples randomly from a d−dimensional sample space, based on a distribution with identity
covariance matrix Σ = Id, it can be proved that the smallest and largest Euclidean distance dmin(D)

and dmax(D) between any two samples satisfy

dmin(D)

dmax(D)
≈

(
1

2

) 1
d

→ 1, d → ∞

meaning that maximum distance becomes indiscernible compared to the minimum distance. Euclidean
distance functions are losing their usefulness in high dimensions.

One method of dealing with the curse of dimensionality is Dimensionality Reduction, which is to map
the high-dimensional data to a lower-dimensional space while preserving the essential structure of the data.
Mathemtically, we would like to find a linear projection

f : RD 7−→ RL

x 7−→ z = f(x)

where L � D. Generally, z = f(x) = U⊤x, where U ∈ RD×L. A desired projection matrix can be obtained
by minimizing reconstruction error. We want to see a small error when remapping z back to x, i.e.

∃g : RL 7−→ RD

z 7−→ x ≈ g(f(x))

Another method is to consider isometry, which is to preserve the pairwise distance between data points in X
and Z, i.e.

dZ(f(xi), f(xj)) ≈ dX (xi,xj)

2 Linear Dimensionality Reduction

2.1 Principal Component Analysis (PCA)
Recall that in LASSO-based supervised feature selection, we solve the optimization problem

min
w

‖y − Xw‖22 + λ‖w‖1
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For X = [x1,x2, · · · ,xD], the column xd contributes to the estimation of y iff wd 6= 0. That’s to say, the
useful features are those with non-zero weights.

X̂ = [xd]d:wd ̸=0 ∈ RN×L, ŵ = [wd]d:wd ̸=0 ∈ RL, L < D

However, labeled training data y,X might be hard or expensive to get, but unlabeled training data X might
be more easily available. PCA is able to extract meaningful directions from such unlabeled data.

PCA

Principal Component Analysis (PCA) is an unsupervised dimensionality reduction technique.
Given a matrix of data points X ∈ RN×D, it finds one or more orthogonal directions vi that capture
the largest amount of variance in the data.

Intuitively, the directions with less variance contain less information and may be discarded without introducing
too much error.

The Principal of PCA is to sequentially find the projections maximizing the preserved energy of data (Minimizing
the residual that cannot be captured by the projections). Therefore, we start from the first component v1.

Derivation of Principle Components

The first L principal components of a collection of data points X ∈ RN×D are the eigenvectors
corresponding to the largest L orthonormal eigenvalues of the X⊤X ∈ RD×D.

Let X ∈ RN×D be the data matrix with N rows of D−dimensional data. xi
⊤ are considered to be i.i.d. samples

from some random vector x.

First, we process the data to be columnwise zero-mean, i.e. X⊤1N = 0D. This is achieved by substracting the

average of all the rows, i.e. x̄⊤ =
1

N

N∑
i=1

xi
⊤ from each row.

X =


x1

⊤

x2
⊤

...
xN

⊤

 zero-meaned
=⇒ X′ =


x11 − x̄1 x12 − x̄2 · · · x1D − x̄D

x21 − x̄1 x22 − x̄2 · · · x2D − x̄D

...
... . . . ...

xN1 − x̄1 xN2 − x̄2 · · · xND − x̄D

 =


x1

⊤ − x̄⊤

x2
⊤ − x̄⊤

...
xN

⊤ − x̄⊤

 = X − 1N x̄⊤

Still we denote X as the zero-meaned data matrix for convenience.

Second, since X is zero-meaned, the sample variance of the datapoints’ projections onto a unit vector v

is given by

Var(x⊤v) = E[(x⊤v)2]− E[x⊤v]2 = E[(x⊤v)2]

=
1

N

N∑
i=1

(xi
⊤v)2 =

1

N
‖Xv‖ =

1

N
v⊤X⊤Xv

With the motivation of maximizing the variance, we have the optimization problem

max
v

v⊤X⊤Xv, s.t. v⊤v = 1

The Lagrangian of the optimization problem is

L(v, λ) = v⊤X⊤Xv + λ(v⊤v − 1)

⇒∂L
∂v

= 2X⊤Xv − 2λv = 0 ⇒ X⊤Xv = λv
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that the first component v1 satisfies X⊤Xv1 = λv1, i.e. v1 is an eigenvector of (X⊤X)D×D. Since our
constraint is v⊤v = 1, we have

v1
⊤X⊤Xv1 = λv1

⊤v1 = λ

⇒ max
v

v⊤X⊤Xv = λmax(X
⊤X)

So the first component v1 is the orthonormal eigenvector corresponding to the largest eigenvalue of
X⊤X. Furthermore, it can be proved that the i−th component vi is the eigenvector corresponding to the i−th
largest eigenvalue of X⊤X.

Therefore, The first L principal components of a collection of data points are the eigenvectors
corresponding to the largest L orthonormal eigenvalues of the X⊤X. It can also be observed that
The first L principal components are the top-L columns of V , the right-singular matrix of X. Therefore, we
can obtain PCs by performing SVD on X.

Once we have computed the principal component vi, we can use them as a new coordinate system. The
k−th principal component of a D− dimensional datapoint xi ∈ RD is xi

⊤vk, the scalar projection of xi

onto the k−th principal component vk. Denote V D×L = [v1, · · · ,vL], we can compute all the PCs of all
the datapoints by

ZN×L = XN×DV D×L, L < D

We have successfully reduced the dimensionality of the data from D to L! A reconstruct of X from Z will
be

X̂N×D = ZN×LV
⊤
L×D = XN×DV D×LV

⊤
L×D

2.2 Whitening
Let’s revisit Whitening. Given X = [x1, · · · ,xD] with D features, we similarily process the data to be colum-
nwise zero-meaned:

X′ = X − 1N x̄⊤

where x =
1

N

N∑
i=1

xi. Then the estimate covariance matrix measuring the covariance between feature i and j is

given by

Σ̂ =
1

N − 1
(X − 1Nx⊤)⊤(X − 1Nx⊤) =

1

N − 1
X′⊤X′

Then we can whiten the data by

X̃ = (X − 1Nx⊤)Σ̂
− 1

2 = X′Σ̂
− 1

2

This is very similar to PCA. By EVD we know

X′⊤X′ = V ΛV ⊤ = (N − 1)Σ̂

Therefore

(N − 1)X̃ = (N − 1)X′Σ̂
− 1

2 = X′︸︷︷︸
Shifting

V︸︷︷︸
PCA Matrix

Λ− 1
2︸︷︷︸

Scaling

V ⊤

2.3 Data Denoising by PCA
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Data Denoising by PCA

We claim that PCA is least-square data denoising in statistical ML. Suppose an i.i.d Gaussian noise
model for observed data X

Xnoisy = Xclean +E, E ∼ N (0, σ2I)

The least square data denoising problem is denoted as

X̂ = argmin
X

‖Xnoisy −X‖2F

When the feasible domain corresponds to a low-rank constraint

Ω := {X ∈ RN×D : rank(X) ≤ L}

We have the closed-form solution

X̂ = arg min
X∈Ω

‖Xnoisy −X‖2F = ULΣLV
⊤
L , where Xnoisy = UΣV ⊤

where ΣL is the top-L singular values matrix and UL,V L contains only the top-L singular vectors.

Intuitively, noises and unimportant information are usually captured by the last few principal components.
Therefore, we only keep the first L principal components to denoise the data.

2.4 Other projection and factorization models

Robust PCA

Consider sparse noise

Xnoisy = Xclean +E, E ∼ L(0, σ2I)

Still we have the feasible domain corresponds to a low-rank constraint

Ω := {X ∈ RN×D : rank(X) ≤ L}

The denoised data is given by

X̂ = arg min
X∈Ω

‖Xnoisy −X‖1

Non-negative Matrix Factorization (NMF)

The denoised data is given by

X̂ = arg min
X∈Ω

‖Xnoisy −X‖2F

where the feasible domain is

Ω := {X = UV ⊤ : rank(X) = L, U ,V ≥ 0}
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Subspace Clustering

Subspace clustering is similar to LASSO, but the supervised signal y is the data itself:

Ŵ = arg min
W∈RD×D

‖X −XW ‖2F + λ‖W ‖1 + λ2‖W ‖∗

where ‖W ‖∗ is the nuclear norm of W , i.e. the sum of its singular values.

Before introducing Compressive Sensing, let’s first look at an example of image recovering.

Suppose figure x is Fourier transformed Φ to frequency domain s, and after truncating the signal in s, we still
can expect to reconstruct a high quality image after the removal of some high frequency signals of lower energy.

However, in practical, we want to reconstruct a high-quality original image x′ using a low-quality observation
y, i.e., an undersampling of the true image x, by transforming it to get a sparse space s of x. Mathematically

Compressive Sensing

For an unknown signal xN×1, suppose it can be sparsely represented in sparse basis ΨN×K , i.e. x = Ψs,
where coefficient vector sK×1 is sparse. We expect to recover s from observation yM×1. The optimization
problem is

ŝ = argmin
s

‖yM×1 −ΦM×NΨN×KsK×1‖22 + λ‖s‖1

= argmin
s

‖yM×1 −ΘM×KsK×1‖22 + λ‖s‖1

where Φ is a random measurement matrix, Ψ is the sparse basis matrix, and s is the sparse coefficient
vector. Specifically, ΘM×K = ΦM×NΨN×K is named as sensing matrix.
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If M = N here, we can directly solve y = Θs. But normally M < N , there are infinitely many solutions to
y = Θs. Therefore, we add a L1 regularization term to the optimization problem to find the sparsest solution.

Furthermore, when Φ satisfies the Restricted Isometry property (RIP),

Restricted Isometry Property (RIP)

A matrix Φ satisfies the RIP with restricted isometry constant δ<1 if for all K−sparse vectors x1, x2,
i.e. ∀x1, x2 ∈ {x ∈ RN : ‖x‖0 ≤ S}, we have

(1− δ) ≤ ‖Φx1 − Φx2‖22
‖x1 − x2‖22

≤ (1 + δ)

we have

• Stable Recovery: When the rows of sensing matrix M ≥ 1

C
· S · log N

S
leads to an exact reconstruction

with probability 1−O(N−M ).

• Solving min
s

‖y − Θs‖22 + λ‖s‖1 is equivalent to solving min
s

‖y − Θs‖22 + λ‖s‖0

Commonly used sensing matrices Θ include Sub-Gaussian matrices(Gaussian, Bernoulli) and Fourier
matrices.

6


	Curse of Dimensionality
	Linear Dimensionality Reduction
	Principal Component Analysis (PCA)
	Whitening
	Data Denoising by PCA
	Other projection and factorization models



