
Lecture 7: Nonlinear Dimensionality Reduction
Shukai Gong

1 Manifold Learning

1.1 Multi-dimensional Scaling

Metric MDS

Given a set of data {xn}Nn=1, we can compute a distance matrix

D = [dij] ∈ RN×N , dij = d(xi,xj)

Metric MDS aims at finding low-dimensional latent representation {zn}Nn=1 to keep isometry as much
as possible via

min
{zn}N

n=1

Stressd({zn}Nn=1) =

 min
{zn}N

n=1

∑
i ̸=j

(dij − ∥zi − zj∥p)2
 1

2

where p = 1, 2 in general.

[Note]

• There’s no explicit expression for {xn} → {zn}

• There isn’t unique solution for {zn}. For example, if we take p = 2 and

{z∗
n} = arg min

{zn}N
n=1

∑
i ̸=j

(dij − ∥zi − zj∥2)2
 1

2

and U as any unitary matrix (U∗U = I), then {Uz∗
n} is also a solution since ∥Uzi−Uzj∥2 = ∥zi−zj∥2.

Classic MDS

Classic MDS is a special case of Metric MDS where dij = ∥xi − xj∥2 is Euclidean. We replace our
optimization goal from min Stressd({zn}Nn=1), which minimizes the difference between pairwise
distances in the original space and the latent space, to

min Straind({zn}Nn=1) = min
{zn}N

n=1


N∑

i,j=1

(kij − z⊤
i zj)

2

N∑
i,j=1

k2ij


1
2

which minimizes the difference between inner product in the original space and the latent
space.
Denote our dataset as X ∈ RN×D. Here the Gram Matrix is defined as K = [kij] = −1

2
C(D ⊙D)C

with centering matrix C = IN − 1

N
1N×N . The low-dimension embedding Z∗ is derived first by

performing EVD on K := V ∆V ⊤, then

Z∗ = V L∆
1
2

L

1

Denote X̃ = CX, then K = X̃X̃
⊤ (See Appendix for derivation). Back to our optimization goal of

min
{zn}N

n=1

Straind({zn}Nn=1) = min
{zn}N

n=1


N∑

i,j=1

(kij − z⊤
i zj)

2

N∑
i,j=1

k2ij


1
2

= min
{zn}N

n=1

 N∑
i,j=1

(kij − z⊤
i zj)

2

 1
2

= min
Z

∥K −ZZ⊤∥F = min
Z

∥K −ZZ⊤∥2F

= min
Z

tr[(K −ZZ⊤)⊤(K −ZZ⊤)] = min
Z

tr[(K −ZZ⊤)2]

Performing EVD on K and ZZ⊤, we have

K = V ∆V ⊤, ZZ⊤ = QΨQ⊤

and then

∥K −ZZ⊤∥2F = tr[(V ∆V ⊤ −QΨQ⊤)]2 = tr[(V ∆V ⊤ − V V ⊤QΨQ⊤V V ⊤)2]

= tr[(V (∆− V ⊤QΨQ⊤V)V ⊤)2] = tr[V 2(∆− V ⊤QΨQ⊤V)2(V ⊤)2]

= tr[(V ⊤)2V 2(∆− V ⊤QΨQ⊤V)2] = tr[(∆− V ⊤QΨQ⊤V)2]

Let M := V ⊤Q, then

min
Z

∥K −ZZ⊤∥2F = min
M,Ψ

tr[(∆−MΨM⊤)2]

= min
M,Ψ

tr(∆2)− 2tr(∆MΨM⊤) + tr[(MΨM⊤)2]

Denote L = tr(∆2) − 2tr(∆MΨM⊤) + tr[(MΨM⊤)2]. First we take the derivative w.r.t. M and set it to
zero:

∂L
∂M

= −2∆MΨ+ 2(MΨM⊤)MΨ = 0

⇒ MΨM⊤ = ∆

Before taking the derivative w.r.t. Ψ, we first change L into:

L = tr(∆2)− 2tr(∆MΨM⊤) + tr[(MΨM⊤)2]

= tr(∆2)− 2tr(M⊤∆MΨ) + tr[(M⊤MΨ)2]

then
∂L
∂Ψ

= −2M⊤∆M + 2(M⊤MΨ)M⊤M

= −2M⊤∆M + 2M⊤(MΨM⊤)M = 0

⇒ M⊤ΨM = ∆

Both FOC points to M⊤ΨM = ∆. One possible solution to this is

M = I, Ψ = ∆

which means that the minimum of the non-negative objective function tr[(∆−MΨM⊤)2] is 0. Therefore, we
have

M = I = V ⊤Q ⇒ Q = V

Recall that

ZZ⊤ = QΨQ⊤ = V ∆V ⊤ = V ∆
1
2∆

1
2V ⊤ ⇒ Z = V ∆

1
2

Truncating this Z gives us Z∗ = V L∆
1
2

L ∈ RN×L.

2

1.2 ISOMAP

ISOMAP

ISOMAP is a special case of MDS where isometry is kept under geodesic distance as much as
possible. Given a set of data {xn}Nn=1

1. Determine the neighbors of each data point and construct a K−nearest neighbor (KNN) graph of
the data.

2. Compute the shortest path (Dijkstra/Floyd) distance between arbitary two nodes and obtain an
approximate geodesic distance matrix D = [dij] ∈ RN×N .

3. Compute low-dimensional embedding by MDS similarilyK = −1

2
C(D ⊙D)C

K = V ∆V ⊤
⇒ Z∗ = V L∆

1
2

L

ISOMAP

1.3 Locally Linear Embedding

Locally Linear Embedding (LLE)

LLE keeps isometry indirectly through inheriting local linear self-representation power. Local linear
self-representation means that each data point can be represented by a linear combination of its neighbors:
given a sample xi and its K neighbors Xi = [x1, · · · ,xK] ∈ RD×K where d(xi,xk) < τ, ∀k = 1, · · · ,K,
∃w ∈ RK , s.t. xi ≈ Xiwi.
In this sense, given X = [x1, · · · ,xN] ∈ RD×N , LLE aims at finding a low-dimensional embedding
Z = [z1, · · · , zN] ∈ RL×N (L < D) that inherits the local linear self-representation relations.

Closed-form Solution for LLE

LLE can be decomposed into 3 steps

1. Linear Reconstruction by Neighbors: First, we compute the linear coefficients w̃ by

W̃
∗
= argmin

W̃

N∑
i=1

∥xi −Xiw̃i∥22 s.t. W̃1K = 1N

Here W̃ = [w̃1, · · · , w̃N]⊤ ∈ RN×K . The coefficient w̃i = [w̃i1, · · · , w̃iK]⊤ for each sample is
constrained such that coefficients weighted on each neighbor sums up to 1. xi refers to the ’sample’

3

and Xi refers to its ’neighbors’.

2. Linear Embedding: First we expand the old W̃ = [w̃ij] ∈ RN×K to W = [wij] ∈ RN×N by

wij =

{
w̃ij if xj ∈ KNN(xi)

0 otherwise

Compute the embedding Z ∈ RL×N by

Z∗ = argmin
Z

N∑
i=1

∥zi −
N∑
j=1

wijzj∥22 s.t. 1

N

N∑
i=1

zizi
⊤ = IL,

N∑
i=1

zi = 0

We constraint the embedding to ensure that Cov(Z) = IL. The second constraint can be tem-
porarily ignored since it can be achieved implicitly. We want to rewrite the object funciton in a
more compact form.

N∑
i=1

∥zi −
N∑
j=1

wijzj∥22 =

N∑
i=1

∥zi −Zwi∥22 =

N∑
i=1

∥Z1i −Zwi∥22 = ∥Z −ZW⊤∥2F

= tr
(
(Z −ZW⊤)(Z −ZW⊤)⊤

)
= tr

(
Z(I −W −W⊤ +W⊤W)Z⊤

)
where the alignment matrix Φ = IN −W −W⊤ +W⊤W .

3. Conduct EVD on Φ := UΛU⊤. After sorting the eigenvectors from smallest to largest eigenvalues,
we ignore the first eigenvector having zero eigenvalue and take the L smallest eigenvectors
of U with non-zero eigenvalues as the embedding (Z⊤)∗ ∈ RN×L.

First, for the linear reconstruction by neighbors, the coefficients W can be computed as follows:
Note that

∥xi −Xiwi∥22 = ∥xi(1K
⊤wi)−Xiwi∥22 = ∥(xi1K

⊤ −Xi)wi∥22
= wi

⊤(xi1K
⊤ −Xi)

⊤(xi1K
⊤ −Xi)wi

≡ wi
⊤Giwi

where we denote Gi = (xi1K
⊤ −Xi)

⊤(xi1K
⊤ −Xi) ∈ RK×K . The optimization problem is

W ∗ = argmin
W

N∑
i=1

wi
⊤Giwi s.t. W1K = 1N

The Lagrangian for this is

L(W ,Λ) =

N∑
i=1

wi
⊤Giwi −

N∑
i=1

λi(1
⊤
Kwi − 1)

⇒


∂L
∂wi

= 2Giwi − λi1K = 0

∂L
∂λi

= 1⊤
Kwi − 1 = 0

⇒


wi =

λi

2
G−1

i 1K

1⊤
K

λi

2
G−1

i 1K = 1

⇒


wi =

λi

2
G−1

i 1K

λi =
2

1⊤
KG−1

i 1K

⇒ wi =
G−1

i 1K

1⊤
KG−1

i 1K

4

Second, for the derivation of linear embedding, our optimization problem is essentially

min tr(ZΦZ⊤) s.t. 1

N
ZZ⊤ = IL

and therefore the Lagrangian for this is (Important: Under optimal Λ ∈ RL×L)

L(Z,Λ) = tr(ZΦZ⊤)− tr(Λ⊤(
1

N
ZZ⊤ − IL))

⇒ ∂L
∂Z

= 2ZΦ− 2

N
ΛZ = 0 ⇒ ΦZ⊤ = Z⊤(

1

N
Λ)

Moreover, recall that our goal is to minimize

tr(ZΦZ⊤) = tr(ZZ⊤ 1

N
Λ) = tr(1

N
Λ) =

1

N

N∑
i=1

λi

and EVD of Φ := UΛU⊤. This is means that under optimal, we should pick L eigenvectors from the
eigenvectors of Φ to compose the embedding (Z⊤)∗ ∈ RN×L. After sorting the eigenvectors from smallest
to largest eigenvalues, we ignore the first eigenvector having zero eigenvalue and take the L smallest
eigenvectors of U with non-zero eigenvalues of Φ as the embedding (Z⊤)∗.

1.4 Laplacian Eigenmap

Laplacian Eigenmap

Given a set of data X = [x1, · · · ,xN] ∈ RD×N , we construct the similarity matrix A = [a(xi,xj)] ∈
RN×N . A reasonable criterion to get the low-dimensional embedding Z = [z1, · · · , zN] ∈ RL×N is to
minimize the following objective function

min
Z

N∑
m,n=1

∥zm − zn∥22a(xm,xn)

because when distance ∥zm − zn∥22 is small, the similarity a(xm,xn) should be large.

Closed-form Solution of Laplacian Eigenmap

Z = argmin
Z

N∑
m,n=1

∥zm − zn∥22a(xm,xn) = argmin
Z

N∑
m,n=1

(zm
⊤zm − 2zm

⊤zn + zn
⊤zn)amn

= argmin
Z

N∑
m=1

zm
⊤zm

(
N∑

n=1

amn

)
+

N∑
n=1

zn
⊤zn

(
N∑

m=1

amn

)
− 2

N∑
m,n=1

zm
⊤znamn

= argmin
Z

2tr(Z⊤diag(A1N)Z)− 2tr(Z⊤AZ)

= argmin
Z

2tr(Z⊤(diag(A1N)−A)Z)

= argmin
Z

tr(Z⊤LZ) where L = diag(A1N)−A

In practice, the Laplacian matrix L is usually normalized by the degree matrix D = diag(A1N):

L̂sym = D− 1
2LD− 1

2 = D− 1
2 (D −A)D− 1

2 = IN −D− 1
2AD− 1

2 = IN − Â

By performing EVD on L̂sym := UΛU⊤, we can get the embedding Z∗ = UL ∈ RN×L.

5

In construction of similarity matrix A, we can apply the Gram matrix of kernel function such as the RBF
kernel:

a(xi,xj) := K(xi,xj) = exp(−∥xi − xj∥22/h)

2 Kernel Methods

Kernel PCA

Suppose our data X ∈ RN×D is non-linearly separable. We can first map the data into a higher-
dimensional space Φ(X) = [ϕ(x1), · · · , ϕ(xn)]

⊤ ∈ RN×dim(F) and then perform EVD on the Gram
matrix K = Φ(X)Φ(X)⊤.

K = V ∆V ⊤

The PCA corresponds to the top-L eigenvectors of K: Z∗ = V L∆
1
2

L ∈ RN×L.

Revisiting MDS and ISOMAP, we can consider them as special cases of Kernel PCA.

• For MDS, K = −1

2
C(D ⊙D)C = CXX⊤C = X̃X̃

⊤ (Linear Kernel)

• For ISOMAP, K = −1

2
C(Dgeo ⊙Dgeo)C (Mercer Kernel)

2.1 t-Distributed Stochastic Neighbor Embedding (t-SNE)

t-SNE

Given a dataset X = [x1, · · · ,xN] ∈ RD×N , first we define a Probability pij that is proportional to the
similarity between xi and xj :

pij =
pj|i + pi|j

2N
, pii = 0

pj|i =
exp(−∥xi − xj∥22/2σ2

i)∑
k ̸=i

exp(−∥xi − xk∥22/2σ2
i)

t-SNE aims to learn Z = [z1, · · · , zN] ∈ RK×N (usually K = 2, 3 for visualization purposes) that
minimizes the KL divergence between pij and qij

min
Z

KL(P ||Q) = min
Z

∑
i ̸=j

pij log
pij
qij

where qij is the similarity between zi and zj :

qij =
(1 + ∥zi − zj∥22)−1∑

k ̸=l

(1 + ∥zk − zl∥22)−1
, qii = 0

where {qij} is the Student-t distribution with df=1. Optimization of KL divergence is done with
SGD.

6

3 Autoencoding
First, let’s revisit PCA from a viewpoint of autoencoding. Recall that PCA is the least-square data denoising
under i.i.d. Gaussian noise,

X̂ = arg min
X∈Ω

∥Xnoisy −X∥2F = ULΣLV
⊤
L , where Xnoisy = UΣV ⊤

referring to the construction of principal components and the corresponding reconstruction. This can be viewed
as a special case of autoencoding where the encoder and decoder are linear transformations.

Encoder: Z = XnoisyV
⊤
L

Decoder: X∗ = XnoisyV
⊤
LV L

Here V ⊤
L and V L are the encoder and decoder respectively.

Autoencoders

In general, a typical autocoder consists of

Encoder: f : X → Z
Decoder: g : Z → X

Given a set of data X = {x1, · · · ,xN} ∈ RD×N , the autoencoder aims to learn the encoder and decoder
that minimize the reconstruction error

min
f,g

N∑
i=1

loss (xi − g(f(xi))) + regularization(qZ|X , pZ)

where qZ|X is the posterior distribution of latent space Z given dataset X and pZ is the prior distribution
of Z.

References
• Multidimensional Scaling, Sammon Mapping, and Isomap: Tutorial and Survey

• Locally Linear Embedding and its Variants: Tutorial and Survey

7

https://arxiv.org/pdf/2009.08136
https://arxiv.org/pdf/2011.10925

Appendix

Classic MDS

The specific process of deriving K = X̃X̃⊤ is as follows: Note that

X ⊙X1D1N =

x
2
11 · · · x2

1D
...

x2
N1 · · · x2

ND


N×D

1...
1


D×1

[
1 · · · 1

]
1×N

=

 x⊤
1 x1 · · · x⊤

1 x1

...
x⊤
NxN · · · x⊤

NxN


N×N

=

 ⟨x1,x1⟩ · · · ⟨x1,x1⟩
...

⟨xN ,xN ⟩ · · · ⟨xN ,xN ⟩


N×N

and

dij = ∥xi − xj∥22 = (xi − xj)
⊤(xi − xj) = xi

⊤xi − 2xi
⊤xj + xj

⊤xj

= ⟨xi,xi⟩+ ⟨xj ,xj⟩ − 2 ⟨xi,xj⟩

We can decompose

D ⊙D =

d
2
11 · · · d21N
...

d2N1 · · · d2NN

 = (X ⊙X1D1N) + (X ⊙X1D1N)⊤ − 2XX⊤

C is essentially a centering matrix since

CX = (IN − 1

N
1N×N)X = X − 1

N
1N1⊤

NX

=

x11 · · · x1D

...
xN1 · · · xND

−


x11 + · · ·+ xN1

N
· · · x1D + · · ·+ xND

N...
x11 + · · ·+ xN1

N
· · · x1D + · · ·+ xND

N



=

x11 − x1 · · · x1D − xD

...
xN1 − x1 · · · xND − xD


Therefore, X̃ = CX is the zero-meaned data matrix of X. One can verify that after double centralizing,

C
(
(X ⊙X1D1N + (X ⊙X1D1N)⊤)

)
C = 0N×N

Therefore, the inner product data K is essentially

K = −1

2
C(D ⊙D)C = −1

2
C(X ⊙X1D1N + (X ⊙X1D1N)⊤ − 2XX⊤)C

= CXX⊤C = CX(CX)⊤ = X̃X̃
⊤

8

	Manifold Learning
	Multi-dimensional Scaling
	ISOMAP
	Locally Linear Embedding
	Laplacian Eigenmap

	Kernel Methods
	t-Distributed Stochastic Neighbor Embedding (t-SNE)

	Autoencoding

