Lecture 7: Nonlinear Dimensionality Reduction
Shukai Gong

1 Manifold Learning

1.1 Multi-dimensional Scaling

Metric MDS

Given a set of data {z,,}2_;, we can compute a distance matrix
D = [di;] € RVN | dy; = d(;, ;)
Metric MDS aims at finding low-dimensional latent representation {z,}_; to keep isometry as much

as possible via

min Stressd({zn}fyzl) = min (dij — ||zs — zj||p)2

N N
{zn}n:l {z’ﬂr n=1 ’L;ﬁ]

where p = 1,2 in general.

[Note]
o There’s no explicit expression for {zn} — {zn}

o There isn’t unique solution for {z,}. For example, if we take p = 2 and

{zn} = arg iy D (i = llzi = z42)?

Znfpn=1 ,L#]

and U as any unitary matrix (U*U = I, then {Uz,,} is also a solution since ||Uz; —U z;||2 = ||z; — zj]|2.

Classic MDS

Classic MDS is a special case of Metric MDS where d;; = ||&; — «;||2 is Euclidean. We replace our
optimization goal from min Stressy({2,}_;), which minimizes the difference between pairwise
distances in the original space and the latent space, to

N 2
> (G = 2] 29)7
ig=1

min Straing({z,})_,) = min
{zad0y N 2
>k
ij=1
which minimizes the difference between inner product in the original space and the latent

space.

1
Denote our dataset as X € RV*P. Here the Gram Matrix is defined as K = [k;;] = —iC(D ® D)C

1
with centering matrix C = Iy — Nl ~NxN. The low-dimension embedding Z* is derived first by

performing EVD on K := VAVT, then

Z"=V,A?

~ - =T
Denote X = CX, then K = XX (See Appendix for derivation). Back to our optimization goal of

¥ : 1
Z_:l(kij -z z;)? N z
min Straing({z,}"_,) = min | 2= = min Z (kij — 2, z;)?
{zadiy {zadiy X o LE20 R
> ki =l
ij=1

= min[|K — ZZ"|p = min || K — ZZ"|%
= min tr[(K — ZZ"Y(K-2ZZ")] = min tr[(K — ZZ")?

Performing EVD on K and ZZ ", we have
K=VAV', zZ" =QuQ"
and then
IK-ZZ"|7 =u[(VAVT —QEQ") =t (VAV' —VVTQEQ'VV ')

=u[(V(A-VTQEQ'V)V')) | = a[VZA -V QEQ'V)*(V')
=u[(VI)’VHA-VIQEQ'V) | =t[(A-V'QU¥Q'V)’

Let M := V' 'Q, then

tr[(A — M&M ")?]

min |K — ZZ"||% = mi

Z 9
i
9

Denote £ = tr(A?) — 2tr(AM®M ") + tr[(M®M ")?]. First we take the derivative w.r.t. M and set it to
Z€ero:

RE RE
eE eE

tr(A?) — 2tr(AM®M ") + tr[(MEM ")?)

oL T
— = 2AMY +2(MYM YMP =
oM +2() 0
=MIM' =A
Before taking the derivative w.r.t. ¥, we first change £ into:
L =tr(A?) = 2tr(AMYM ") + tr[(MEM ")?]
= tr(A?) — 2tr(M T AMW) + tr[(M " M¥)?]
then
oL T T T
= 2M"AM +2M"(M¥M")M =0
=M'¥M=A
Both FOC points to M T WM = A. One possible solution to this is
M=I v=A

which means that the minimum of the non-negative objective function tr[(A — M®M ")?] is 0. Therefore, we
have

M=I=V'Q=Q=V
Recall that
ZZT =QUQ = VAV =VAIAV = Z=VA?

1
Truncating this Z gives us Z* = V A? € RVXL,

1.2 ISOMAP

ISOMAP

ISOMAP is a special case of MDS where isometry is kept under geodesic distance as much as
possible. Given a set of data {z,}_,

1. Determine the neighbors of each data point and construct a K —nearest neighbor (KNN) graph of
the data.

2. Compute the shortest path (Dijkstra/Floyd) distance between arbitary two nodes and obtain an
approximate geodesic distance matrix D = [d;;] € RVXN,

3. Compute low-dimensional embedding by MDS similarily

1
K=--C(DoD)C
¢DoD) = Z* =V, A}

K=vAvVv'

ISOMAP

1.3 Locally Linear Embedding

Locally Linear Embedding (LLE)

LLE keeps isometry indirectly through inheriting local linear self-representation power. Local linear
self-representation means that each data point can be represented by a linear combination of its neighbors:

given a sample z; and its K neighbors X; = [z, ,xk] € RP*K where d(z;,x) <7, Vk=1,--- , K,
Jw € RE sit. x5 = X;w;.

In this sense, given X = [x1, - ,zn] € RPN LLE aims at finding a low-dimensional embedding
Z =|z1, -+ ,zn] € REXN (L < D) that inherits the local linear self-representation relations.

Closed-form Solution for LLE

LLE can be decomposed into 3 steps
1. Linear Reconstruction by Neighbors: First, we compute the linear coefficients w by
N
W = argmjnz sz = Xz11~}1||§ st. Wlg =1y
W=,

Here W = [y, ,wn]T € RYNXK. The coefficient w; = [0y, - ,Wix] ' for each sample is
constrained such that coefficients weighted on each neighbor sums up to 1. x; refers to the 'sample’

and X refers to its ‘neighbors’.

2. Linear Embedding: First we expand the old W = [w;;] € RN*K to W = [w;;] € RV*N by

u?ij if Tj € KNN(:Dl)
Wi =
/ 0 otherwise

Compute the embedding Z € RE*N by

N N | X N
Z* = arg min E llz: — E wijsz% s.t. — E 2z =1, g 2z =0
zZ 4 : N 4 :
=1 g=i =il 1=1

We constraint the embedding to ensure that Cov(Z) = I. The second constraint can be tem-
porarily ignored since it can be achieved implicitly. We want to rewrite the object funciton in a
more compact form.

N

N N N
S llzi =Y wiizl3 =Nz — Zwill3 =) 121 - Zwi|3 =2 - ZW ||
i=1 j=1 i=1 i=1

= tr ((Z —ZW)(Z - ZWT)T)

= tr (Z(I S 1 WTW)ZT>

where the alignment matrix ® = Iy - W - W' + W 'W.

3. Conduct EVD on ® := UAU ". After sorting the eigenvectors from smallest to largest eigenvalues,
we ignore the first eigenvector having zero eigenvalue and take the L smallest eigenvectors
of U with non-zero eigenvalues as the embedding (Z")* € RNV*E,

\.

First, for the linear reconstruction by neighbors, the coefficients W can be computed as follows:
Note that

s — Xswl|5 = [|os(1x "ws) — Xiws||5 = [[(@ile T — Xi)wslls
=w; (1| — X;) (@il — X;)w;
= 'w,-TGi'wi
where we denote G; = (acilKT — Xi)—'—(:cilKT — X;) € REXK_ The optimization problem is

N
wW* = i TGiw; st Wlg =1
argn&/nsz iW; S K N
i=

The Lagrangian for this is
N N
ﬁ(W, A) == ZwlTszz - Z)\i(l;r(’wi — 1)
i=1

i=1

oL i

N Dws =2G;w; — \1lg =0 N w; = ?Gi_llK
Ok A Twi—1=0 1N G e =1
N, KW K& tK =

)\i —1
wZ:?Gl]-K Gi_l]-K
1LG; g

Second, for the derivation of linear embedding, our optimization problem is essentially
1
mintr(Z®Z") s.t. NZZT =1,
and therefore the Lagrangian for this is (Important: Under optimal A € R¥*E)

L(ZA) = (2827 - tr(AT(%ZZT ~ 1)
or |

_ 2 _ T _ T -
=y =22®— SAZ=0=8Z" =2 (;A)

Moreover, recall that our goal is to minimize

N
1 1 1
T T .
tr(Z®ZT) = tr(ZZT —A) = tr(—A) = ;:1 A

and EVD of & := UAU ". This is means that under optimal, we should pick L eigenvectors from the
eigenvectors of ® to compose the embedding (ZT)* € R¥XL_ After sorting the eigenvectors from smallest
to largest eigenvalues, we ignore the first eigenvector having zero eigenvalue and take the L smallest
eigenvectors of U with non-zero eigenvalues of ® as the embedding (Z)*.

1.4 Laplacian Eigenmap

Laplacian Eigenmap

Given a set of data X = [z1, -+ ,xn] € RPN we construct the similarity matrix A = [a(z;, x;)] €
RNV>N A reasonable criterion to get the low-dimensional embedding Z = [2z1,--- ,zy] € REXY s to
minimize the following objective function

N

mzin Z |Z2m — 2Znll30(Tm,)
m,n=1

because when distance ||z, — 2z, ||3 is small, the similarity a(x,,) should be large.

Closed-form Solution of Laplacian Eigenmap

N N
Z = argmzin Z |zm — zn||§a(mm,mn) = arngin Z (zmsz — 22 Zn + znTzn)amn
m,n=1 m,n=1

N N N N N
_ . T T _ T
= argmin Z o P (Z amn> + Z T (Z amn> 2 Z Zro " epCon
m=1 n=1 n=1 m=1 m,n=1
= argmzin 2tr(Z " diag(A1N)Z) — 2tr(Z T AZ)
= arg mZin 2tr(Z " (diag(Aly) — A)Z)

= arg mZin tr(Z"LZ) where L = diag(Aly) — A
In practice, the Laplacian matrix L is usually normalized by the degree matrix D = diag(Aln):
Lyn=D LD =D *(D-AD *=Iy-D :AD *=Iy-A

By performing EVD on Esym :=UAU ", we can get the embedding Z* = U, € RNXL,

In construction of similarity matrix A, we can apply the Gram matrix of kernel function such as the RBF
kernel:

a(@i, ;) = K(xs,25) = exp(—||@; — x;|3/h)
2 Kernel Methods

Kernel PCA

Suppose our data X € RN*P is non-linearly separable. We can first map the data into a higher-

dimensional space ®(X) = [p(x1), - ,d(xy,)]" € RV*IME) and then perform EVD on the Gram
matrix K = ®(X)®(X)'.

K=vAv'

1
The PCA corresponds to the top-L eigenvectors of K: Z* =V A} € RNVXL,

Revisiting MDS and ISOMAP, we can consider them as special cases of Kernel PCA.

+ For MDS, K = —%C(D ©D)C=CXX'C=XX' (Linear Kernel)

e For ISOMAP, K = —%C(Dgeo ©® Dgyeo)C (Mercer Kernel)

2.1 t-Distributed Stochastic Neighbor Embedding (t-SNE)

Given a dataset X = [z,--- ,zxn] € RP*N first we define a Probability p;j that is proportional to the
similarity between x; and x;:

pij = J\IQN m’
exp(—|lz; — x;|3/207)

Pii =0

p- . =
Y e(—llwi — will3/207)
ki
t-SNE aims to learn Z = [z1,---,zy] € REXYN (usually K = 2,3 for visualization purposes) that

minimizes the KL divergence between p;; and g;;
. . Pij
KL(P = i log —=
i L) =i)l
i#]
where ¢;; is the similarity between z; and z;:

(1+ Iz — 24l5) "

Qij = .
YT Y+ lze—)P
]

=0

where {¢;;} is the Student-t distribution with df=1. Optimization of KL divergence is done with
SGD.

3 Autoencoding

First, let’s revisit PCA from a viewpoint of autoencoding. Recall that PCA is the least-square data denoising
under i.i.d. Gaussian noise,

X =arg i || Xnoisy — X2 =UL2LV], where X sy = USV T

referring to the construction of principal components and the corresponding reconstruction. This can be viewed
as a special case of autoencoding where the encoder and decoder are linear transformations.

Encoder: Z = XnoisyV—Lr
Decoder: X* = XnOiSyV—LrVL

Here V;| and V, are the encoder and decoder respectively.

Autoencoders

In general, a typical autocoder consists of

Encoder: f: X — Z
Decoder: g: Z2 - X

Given a set of data X = {zy,--- ,xzn} € RP*N the autoencoder aims to learn the encoder and decoder
that minimize the reconstruction error

N
Hflin Z loss (x; — g(f(x:))) + regularization(gz|x,pz)
Yo

where qz|x is the posterior distribution of latent space Z given dataset X and pz is the prior distribution
of Z.

References

e Multidimensional Scaling, Sammon Mapping, and Isomap: Tutorial and Survey

e Locally Linear Embedding and its Variants: Tutorial and Survey

https://arxiv.org/pdf/2009.08136
https://arxiv.org/pdf/2011.10925

Appendix

Classic MDS

The specific process of deriving K = X X7 is as follows: Note that

EREE x%D 1 w;—wl w;—wl
XoXIply=| 1 - n oy =
_x?\fl x?VD NxD 1 Dx1 mLmN ZCLIEN NxN
i <$1,’J31> <$1,SU1>
LN, zN) o (@NeN)] oy
and
dij = |l#; — 53 = (xi — 25) (@i — 25) = 2 @i — 223 @5 + 25 @y

= (@, ®i) + (@5, Tj) — 2 (@i, T5)
We can decompose

2. .. 42
11 1IN
DoD=|: . |=(X0X1ply)+ (X6 X1ply) —2XX'

2 2
le dNN

C is essentially a centering matrix since

1 1
CX = (In— ylvxn)X =X — NlNl—Z\DX
- r11 + -+ TN x1p+ -+ 2xND
11 1D T N
N1 - @ND tutootIN o T A T EIND
N N
(211 —Z1 -+ xip—7p
[TN1— %1 '+ ITND — D,

Therefore, X = CX is the zero-meaned data matrix of X. One can verify that after double centralizing,
C((XoX1ply+ (X ©®X1ply)'))C =0nxn
Therefore, the inner product data K is essentially
K= —%C(D ®D)C = —%C(X ®X1ply + (X X1ply)' —2XX")C

—cxx'c=cx(Ccx) =xx'

	Manifold Learning
	Multi-dimensional Scaling
	ISOMAP
	Locally Linear Embedding
	Laplacian Eigenmap

	Kernel Methods
	t-Distributed Stochastic Neighbor Embedding (t-SNE)

	Autoencoding

