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1 K-means Clustering
A sample should be closer to the centroid of its cluster than to the centroid of other clusters. In this sense, a
heuristic K-means is realized by

Classic K-means

We find the centroids of the clusters in a heuristic way:

1. Initialize K centroids {ck}Kk=1 randomly from the observed data.

2. Repeat the following steps until convergence:

(a) Assign each data point to the nearest centroid C: ∀xn, xn ∈ Ck if k = arg min
j∈{1,··· ,K}

d(xn, cj).

(b) Update the centroids by averaging samples within the cluster: ck =
1

|Ck|
∑

xn∈Ck

xn. (This is

essentially the barycenter of the cluster)

2 Spectral Clustering
Classic K-means Clustering has several drawbacks:

• It doesn’t work well for linearly inseperable data;

• It faces curse of dimensionality (as it primarily relies on Euclidean distance).

Spectral clustering is introduced to overcome this.
Spectral Clustering

We first use the spectrum (eigenvalues) of the similarily matrix A ∈ RN×N of the data X =

{x1, · · · ,xN} ∈ RN×D to perform dimensionality reduction and then apply K-means on the re-
duced space.

Here A ∈ RN×N is the similarity matrix of the data X, where a(xi,xj) = aij ∈ [0, 1] is the similarity between

xi and xj . The spectrum of A is obtained by EVD A = UΛU⊤ =
N∑

n=1
λnunun

⊤

Steps of Spectral Clustering

Given a set of data X = {x1, · · · ,xN} ∈ RN×D

1. Construct the similarity matrix A = [a(xi,xj)] ∈ RN×N .

2. Compute the Laplacian matrix L of A: L = diag(A1N )−A.

3. Normalize the Laplacian matrix L: Lnorm = D− 1
2LD− 1

2 where D = diag(A1N ).

4. Conduct EVD on the Laplacian matrix Lnorm = UΛU⊤, 0 = λ1 ≤ · · · ≤ λN .

5. Truncate the eigenvectors of U to get UL ∈ RN×L.

6. Apply K-means on the rows of UL to get the clustering.
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In this sense, spectrum clustering is essentially a two-step process: (1) Laplacian Eigenmap; (2) K-means.

3 Evaluation of Clustering
Measurements using external ground truth information are called external evaluation, while those not relying
on the ground truth are called internal evaluation.

3.1 When Ground Truth is Available

Purity

Denote Ω = {ω1, · · · , ωK} as the set of K clusters where each ωk contains the indices of the samples
in the k-th cluster. Denote C = {c1, · · · , cJ} as the J classes (ground truth)where each cj contains the
indices of the samples in the j-th class. The purity is computed by assigning each cluster to the class
which is most frequent in the cluster, and calculating the averaged accuracy of the assignment,

Purity(Ω, C) = 1

N

K∑
k=1

max
j∈{1,··· ,J}

|ωk ∩ cj |

where N is the number of samples.

[Drawback]: When the number of clusters K is much larger than the number of classes J , the purity may be
high even if the clustering is bad.

Normalized Mutual Information (NMI)

Denote

• P (ωk) =
|ωk|
N

and P (cj) =
|cj |
N

as the probability of a sample belonging to the k-th cluster.

• P (cj) =
|cj |
N

as the probability of a sample belonging to the j-th class.

• P (ωk ∩ cj) =
|ωk ∩ cj |

N
as the probability of a sample belonging to both the k-th cluster and the

j-th class.

The NMI is defined as

NMI(Ω, C) = 2I(Ω, C)
H(Ω) +H(C)

where

• I(Ω, C) =
∑
k,j

P (ωk ∩ cj) log
P (ωk ∩ cj)

P (ωk)P (cj)
is the mutual information between Ω and C

• H(Ω) = −
∑
k

P (ωk) logP (ωk) and H(C) = −
∑
j

P (cj) logP (cj) are the entropies of Ω and C.

[Note]: NMI achieves a tradeoff between the quality of the clustering and the number of clusters.
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Rand Index (RI)

Rand Index describes the percentage of pairwise decision correctness. Consider N(N − 1)

2
pairs of

samples,

• True Positive (TP): The percentage of the paired samples in the same cluster and the same
class.

• True Negative (TN): The percentage of the paired samples in the different cluster and the
different class.

• False Positive (FP): The percentage of the paired samples in the same cluster and the different
class.

• False Negative (FN): The percentage of the paired samples in the different cluster and the same
class.

and Rand Index is defined as

RI = TP + TN

TP + TN + FP + FN

Some other measurements are listed below:

• Precision, Recall, F1 Score:

Precision =
TP

TP + FP
, Recall = TP

TP + FN
, F1 Score =

2Precision × Recall
Precision + Recall

• Jaccard Index: JI = TP

TP + FP + FN
.

• Dice Index: DI = 2TP

2TP + FP + FN
.

• Fowlkes-Mallows Index: FMI = TP√
(TP + FP )(TP + FN)

=
√

Precision × Recall.

3.2 When Ground Truth is Unavailable

Davies-Bouldin Index

Denote ci as the centroid of the i-th cluster, and sσi as the average distance of all the samples in the
i-th cluster to the centroid ci. The Davies-Bouldin Index is defined as

DBI = 1

K

K∑
i=1

max
j ̸=i

(
σi + σj

d(ci, cj)

)

The principal of DBI is to encourage low intra-cluster distances and high inter-cluster distances. σi+σj measures
the compactness of the clusters, while d(ci, cj) measures the separation between the clusters. In general, the
smaller the DBI, the better the clustering.

Dunn Index

Dunn Index aims at identifying dense and well-separated clusters, it’s defined as the ratio between the
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minimal inter-cluster distance to the maximal intra-cluster distance,

DI =
min

1≤i<j≤K
d(ci, cj)

max
1≤i≤K,xn∈Ci

d(ci,xn)

Silhouette

Given the i-th cluster Ci and the j-th sample xj ∈ Ci, the averaged distance of the sample to other
samples in the same cluster is

a(xj) =
1

|Ci| − 1

∑
xk∈Ci,xk ̸=xj

d(xj ,xk)

The smallest averaged distance to the samples in other clusters is

b(xj) = min
k∈{1,··· ,K},k ̸=i

1

|Ck|
∑

xk∈Ck

d(xj ,xk)

The silhouette of xj is defined as

s(xj) =
b(xj)− a(xj)

max{a(xj), b(xj)}
=


1− a(xj)

b(xj)
a(xj) < b(xj)

0 a(xj) = b(xj)
b(xj)

a(xj)
− 1 a(xj) > b(xj)

Setting the number of clusters as k, the averaged silhouette value of all the data points measures the
tightness of the clusters.

sk =
1

N

N∑
j=1

s(xj)

Setting the number of clusters from 1 to K, the silhouette coefficient is defined as

SC = max
k∈{1,··· ,K}

sk
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