
Lecture 9: Gaussian Mixture Model and EM Algorithm
Shukai Gong

1 Generative Model and Discriminative Model
Denote X as the random variable of samples, optionally Y as the random variable of labels. First, we

introduce the differences between the generative model and discriminative model.

Generative Model Discriminative Model
Functionality Capture the mechanism of generating data Capture the differences between different data points

Principle
Model the data distribution p(X)

or the joint distribution p(X,Y )

Data distribution ⇒ Resample for new data
Model the conditional distribution p(Y |X)

Example K-means Clustering Linear/Logistic Regression

Table 1: Generative Model versus Discriminative Model

2 Gaussian Mixture Model
There is another way of thinking about clustering the data points into K clusters: for each cluster Ck, the

data points within the cluster are generated from a certain distribution, and there are K distributions in total.
One common modeling measure is to model the distribution as Gaussian distribution. As is shown in Figure

1, we can model the data points from two clusters as a mixture of two Gaussian distributions. Each data
point xi from a certain cluster can have both a probability γi1 of belonging to cluster 1 and a probability γi2
of belonging to cluster 2.

Figure 1: Modelling datapoints from two clusters as a mixture of two Gaussian distributions

In this sense, Gaussian Mixture Model (GMM) provides a parametric generative model for data with
clustering structure: we not only cares about which cluster does a data point xi belong to, but also the
probability of xi being generated from each cluster.

Gaussian Mixture Model (GMM)

Suppose that there are K Gaussian distributions defined on the sample space X ∈ RD corresponding to
K clusters. The probability distribution of a random data point x under GMM is given by

p(x) =

K∑
k=1

p(Ck)p(x|Ck) =
K∑

k=1

wkN (x|µk,Σk)
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where wk = p(Ck) ≥ 0 is the probability of choosing the k-th distribution, N (x|µk,Σk) = p(x|Ck) is the
conditional probability of choosing x from the cluster Ck, modeled as a Gaussian distribution with mean
µk and covariance matrix Σk. wk can be considered as the mixture coefficient of the k-th Gaussian

distribution satisfying
K∑

k=1

wk = 1. Our goal is to learn the parameters Θ = {wk,µk,Σk}Kk=1 from the

data.

2.1 Solving GMM Parameters by MLE
Given an i.i.d. sample of X = {x1,x2, . . . ,xN}, the likelihood function of the dataset is

L(Θ) = p(X|Θ) =

N∏
i=1

p(xi|Θ) =

N∏
i=1

K∑
k=1

wkN (xi|µk,Σk)

⇒ l(Θ) = logL(Θ) =

N∑
i=1

log

(
K∑

k=1

wkN (xi|µk,Σk)

)

Our goal is

Θ∗ = argmax
Θ

N∑
i=1

log

(
K∑

k=1

wkN (xi|µk,Σk)

)
︸ ︷︷ ︸

l(Θ)

However, it’s hard to optimize the log-likelihood function directly due to the sum inside the logarithm. Alter-
natively, we adopt the Expectation-Maximization (EM) Algorithm to solve the optimization problem.

2.2 Solving GMM Parameters by Expectation-Maximization (EM) Algorithm
In practice, EM Algorithm is adopted to learn GMM parameters:
EM Algorithm

• Initialization: Initialize the parameters Θ = {wk,µk,Σk}Kk=1 randomly.

• E-Step: Given current parameters {w(t)
k ,µ

(t)
k ,Σ

(t)
k }Kk=1, calculate responsibility, i.e. the proba-

bility of the i-th data point xi belonging to the k-th cluster Ck, denoted as γ
(t)
ik

γ
(t)
ik =

w
(t)
k N (xi|µ(t)

k ,Σ
(t)
k )∑K

j=1 w
(t)
j N (xi|µ(t)

j ,Σ
(t)
j )

, ∀n = 1, 2, . . . , N, k = 1, 2, . . . ,K

• M-Step: Update the model parameters Θ = {wk,µk,Σk}Kk=1 by

w
(t+1)
k =

1

N

N∑
i=1

γ
(t)
ik

µ
(t+1)
k =

∑N
i=1 γ

(t)
ik xi∑N

i=1 γ
(t)
ik

Σ
(t+1)
k =

∑N
i=1 γ

(t)
ik (xi − µ

(t+1)
k )(xi − µ

(t+1)
k )⊤∑N

i=1 γ
(t)
ik
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For the explanation of E-step, first, we can introduce a binary latent variable zk (zk = 1 means xi belongs
to cluster Ck) to represent the cluster that a data point xi really belongs to. By Bayes Rule, γik is essentially
the posterior distribution of cluster Ck given the data point xi:

γik = p(zk = 1|xi) =
p(zk = 1)p(xi|zk = 1)

p(xi)
=

wkN (xi|µk,Σk)
K∑
j=1

wjN (xi|µj ,Σj)

Then, instead of maximizing l(Θ), we choose to minimize its lower bound Q(Θ,Θ(t)) instead:

l(Θ) =

N∑
i=1

log

(
K∑

k=1

wkN (xi|µk,Σk)

)

=

N∑
i=1

log

(
K∑

k=1

γ
(t)
ik

wkN (xi|µk,Σk)

γ
(t)
ik

)

≥
N∑
i=1

K∑
k=1

γ
(t)
ik log

(
wkN (xi|µk,Σk)

γ
(t)
ik

)
≡ Q(Θ,Θ(t)) (by Jensen’s Inequality, log is concave)

Now the optimization problem at the t-th iteration is

(
Θ(t+1)

)∗
= argmax

Θ
Q(Θ,Θ(t)) = argmax

Θ

N∑
i=1

K∑
k=1

γ
(t)
ik log

(
wkN (xi|µk,Σk)

γ
(t)
ik

)

Then, in the M-step, we can update the parameters by taking the partial derivative of Q(Θ,Θ(t)) with respect
to wk,µk,Σk respectively. Specifically, to solve for w

(t+1)
k ,

max
Θ

N∑
i=1

K∑
k=1

γ
(t)
ik log

(
wkN (xi|µk,Σk)

γ
(t)
ik

)
, s.t.

K∑
k=1

wk = 1

⇐⇒ max
Θ

N∑
i=1

K∑
k=1

γ
(t)
ik log (wk) , s.t.

K∑
k=1

wk = 1

L =

N∑
i=1

K∑
k=1

γ
(t)
ik log (wk) + λ

(
1−

K∑
k=1

wk

)

⇒


∂L
∂wk

=
N∑
i=1

γ
(t)
ik

wk
− λ = 0

K∑
k=1

wk = 1

⇒ w
(t+1)
k =

1

N

N∑
i=1

γ
(t)
ik

Indicating that the mixture coefficient wk is the average of the responsibilities of all data points to cluster Ck.
For the update of µ(t+1)

k ,

max
Θ

N∑
i=1

K∑
k=1

γ
(t)
ik log (N (xi|µk,Σk)) = max

Θ

N∑
i=1

K∑
k=1

γ
(t)
ik log

(
1

(2π)D/2|Σk|1/2
exp

(
−1

2
(xi − µk)

⊤Σ−1
k (xi − µk)

))

=max
Θ

N∑
i=1

K∑
k=1

γ
(t)
ik (xi − µk)

⊤
Σ−1

k (xi − µk)

⇒ ∂L
∂µk

=

N∑
i=1

γ
(t)
ik Σ−1

k (xi − µk) = 0

⇒µ
(t+1)
k =

∑N
i=1 γ

(t)
ik xi∑N

i=1 γ
(t)
ik
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For the update of Σ(t+1)
k ,

max
Θ

N∑
i=1

K∑
k=1

γ
(t)
ik log (N (xi|µk,Σk)) = max

Θ

N∑
i=1

K∑
k=1

γ
(t)
ik log

(
1

(2π)D/2|Σk|1/2
exp

(
−1

2
(xi − µk)

⊤Σ−1
k (xi − µk)

))

=max
Θ

N∑
i=1

K∑
k=1

γ
(t)
ik

(
−1

2
log |Σk| −

1

2
(xi − µk)

⊤Σ−1
k (xi − µk)

)

⇒ ∂L
∂Σk

=

N∑
i=1

γ
(t)
ik

(
−1

2
Σ−1

k +
1

2
Σ−1

k (xi − µk)(xi − µk)
⊤Σ−1

k

)
= 0

⇒Σ
(t+1)
k =

N∑
i=1

γ
(t)
ik (xi − µ

(t+1)
k )(xi − µ

(t+1)
k )⊤

N∑
i=1

γ
(t)
ik

2.3 Mechanism of EM Algorithm
Essentially, the EM algorithm is used to find local maximum likelihood parameters of a statistical model

that involve unobserved latent variables. In GMMs, the latent variables are the real cluster assignments of
the data points. To illustrate the mechanism of EM Algorithm, denote q(z) as the distribution of the latent
variables z, and we can decompose l(Θ) = log p(X|Θ) as

l(Θ) = log p(X|Θ) =

∫
z

q(z) log p(X|Θ)dz

=

∫
z

q(z) log

(
p(X, z|Θ)

p(z|X,Θ)

)
dz

=

∫
z

q(z) log

(
p(X, z|Θ)

q(z)
· q(z)

p(z|X,Θ)

)
dz

=

∫
z

q(z) log

(
p(X, z|Θ)

q(z)

)
dz +

∫
z

q(z) log

(
q(z)

p(z|X,Θ)

)
dz

= L(q,Θ) +KL(q(z)||p(z|X,Θ))

The first term L(q,Θ) is the evidence lower bound (ELBO) of the log-likelihood function l(Θ); the second
term KL(q(z)||p(z|X,Θ)) is the Kullback-Leibler (KL) divergence between the distribution of latent
variables q(z) and the posterior distribution of latent variables p(z|X,Θ).

Obviously, log p(X|Θ) = L(q,Θ) +KL(q(z)||p(z|X,Θ)) ≥ L(q,Θ), shown as Figure 2 (a).
KL Divergence

The Kullback-Leibler (KL) divergence measures the difference between two probability distributions p(z)
and q(z):

KL(p||q) =
∫

p(z) log

(
p(z)

q(z)

)
dz

The KL divergence is always non-negative, and it is equal to 0 if and only if p(z) = q(z).

E-step: By setting γ
(t)
ik = p(zk = 1|xi) as the distribution of latent variables, i.e. q(z) = p(z|X,Θ), the KL

divergence term is minimized to 0, making the ELBO equals to the log-likelihood function, shown as Figure 2 (b).

M-step: After obtaining the distribution of latent variables q(z) = p(z|X,Θ(t)), we plug it in the ELBO
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L(q,Θ)

L(q,Θ) =

∫
z

q(z) log

(
p(X, z|Θ)

q(z)

)
dz =

∫
z

p(z|X,Θ(t)) log

(
p(X, z|Θ)

p(z|X,Θ(t))

)
dz

=

∫
z

p(z|X,Θ(t)) log p(X, z|Θ)dz −
∫
z

p(z|X,Θ(t)) log p(z|X,Θ(t))dz

= Ez∼p(z|X,Θ(t))[log p(X, z|Θ)]− Ez∼p(z|X,Θ(t))[log p(z|X,Θ(t))]

= Q(Θ,Θ(t)) + const.

In M-step, the maximzation of Q(Θ,Θ(t)) is essentially lifting the ELBO of the log-likelihood function l(Θ),
shown as Figure 2 (c).

Figure 2: Mechanism of EM Algorithm

To summarize, E-step fixes the distribution of latent variables and makes ELBO equal to the log-likelihood;
M-step lift the log-likelihood function by maximizing ELBO. The EM Algorithm iterates between E-step and
M-step until convergence, shown as Figure 3.

Figure 3: The alternative iterations between E-step and M-step

3 Revisiting K-means Clustering from the Viewpoint of EM Algo-
rithm

K-means can be considered as a variant of GMM optimized with EM Algorithm. As is shown in Table
2, K-means clustering is a special case of GMM with the following properties i) Spherical clusters, ii) Hard
assignment of data points to clusters.
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K-means Clustering Gaussian Mixture Model
Shape of Cluster Spherical Elliptical

Cluster Assignment Hard Assignment
(Each data point is assigned to only one cluster)

Soft Assignment
(Each data point is assigned to each cluster
with a probability)

Table 2: K-means Clustering versus Gaussian Mixture Model

[Note]: The preassumed distribution of GMM can be set as other distributions, such as Bernoulli, Uniform, etc.
The key point is to model a mixture of different distributions.

For convenience, here we still assume that the samples are generated by Gaussian distributions. In K-means
Clustering, some parameters in GMM can be simplified:

• Mixing coefficient: wk =
|Ck|
N

• Covariance matrix Σk = ϵI ⇒ p(x|Ck) = N (x|µk,Σk = ϵI)

So the only thing left for optimizing is the centroid µk (The weighting coefficient wk is always set as the
proportion of data points in cluster k to all data points, and the covariance matrix σk is always a scalar matrix
since the cluster blob is spherical). The E-step and M-step in K-means Clustering are conducted as follows:

• E-step: for each data point xi, when ε → 0, the responsibility γik is calculated by

γ
(t)
ik =

w
(t)
k p(xi|Ck)

K∑
j=1

w
(t)
j p(xi|Cj)

=
w

(t)
k exp{∥xi − µk∥2

2ϵ
}

K∑
j=1

w
(t)
j exp{

∥xi − µj∥2

2ϵ
}
=

1 if k = argmin
j

∥xi − µj∥22

0 otherwise
, ε → 0

• M-step: for each cluster Ck, the centroid µk is updated by maximizing Q(µk,µ
(t)
k ):

µ
(t+1)
k = min

µk

Q(µk,µ
(t)
k ) = min

µk

−
N∑
i=1

K∑
k=1

γ
(t)
ik log

(
1

(2π)D/2ϵD/2
exp

(
− 1

2ϵ
∥xi − µk∥2

))

= min
µk

N∑
i=1

K∑
k=1

γ
(t)
ik ∥xi − µk∥2

This is exactly the optimization goal of K-means clustering itself. To summarize, K-means clustering is a
special example of EM-optimized GMM where the distributions of samples under each cluster are Gaussian
distributions with 0 covariance.
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